4,161 research outputs found

    Optical Quantum Computation with Perpetually Coupled Spins

    Full text link
    The possibility of using strongly and continuously interacting spins for quantum computation has recently been discussed. Here we present a simple optical scheme that achieves this goal while avoiding the drawbacks of earlier proposals. We employ a third state, accessed by a classical laser field, to create an effective barrier to information transfer. The mechanism proves to be highly efficient both for continuous and pulsed laser modes; moreover it is very robust, tolerating high decay rates for the excited states. The approach is applicable to a broad range of systems, in particular dense structures such as solid state self-assembled (e.g., molecular) devices. Importantly, there are existing structures upon which `first step' experiments could be immediately performed.Comment: 5 pages including 3 figures. Updated to published versio

    Elliptical orbits in the Bloch sphere

    Full text link
    As is well known, when an SU(2) operation acts on a two-level system, its Bloch vector rotates without change of magnitude. Considering a system composed of two two-level systems, it is proven that for a class of nonlocal interactions of the two subsystems including \sigma_i\otimes\sigma_j (with i,j \in {x,y,z}) and the Heisenberg interaction, the geometric description of the motion is particularly simple: each of the two Bloch vectors follows an elliptical orbit within the Bloch sphere. The utility of this result is demonstrated in two applications, the first of which bears on quantum control via quantum interfaces. By employing nonunitary control operations, we extend the idea of controllability to a set of points which are not necessarily connected by unitary transformations. The second application shows how the orbit of the coherence vector can be used to assess the entangling power of Heisenberg exchange interaction.Comment: 9 pages, 4 figures, few corrections, J. Opt. B: Quantum Semiclass. Opt. 7 (2005) S1-S

    Tight lower bound to the geometric measure of quantum discord

    Full text link
    Dakic, Vedral and Brukner [Physical Review Letters \tf{105},190502 (2010)] gave a geometric measure of quantum discord in a bipartite quantum state as the distance of the state from the closest classical quantum (or zero discord) state and derived an explicit formula for a two qubit state. Further, S.Luo and S.Fu [Physical Review A \tf{82}, 034302 (2010)] obtained a generic form of this geometric measure for a general bipartite state and established a lower bound. In this brief report we obtain a rigorous lower bound to the geometric measure of quantum discord in a general bipartite state which dominates that obtained by S.Luo and S.Fu.Comment: 10 pages,2 figures. In the previous versions, a constraint was ignored while optimizing the second term in Eq.(5), in which case, only a lower bound on the geometric discord can be obtained. The title is also consequently changed. Accepted in Phys.Rev.

    Quantum dense coding over Bloch channels

    Full text link
    Dynamics of coded information over Bloch channels is investigated for different values of the channel's parameters. We show that, the suppressing of the travelling coded information over Bloch channel can be increased by decreasing the equilibrium absolute value of information carrier and consequently decreasing the distilled information by eavesdropper. The amount of decoded information can be improved by increasing the equilibrium values of the two qubits and decreasing the ratio between longitudinal and transverse relaxation times. The robustness of coded information in maximum and partial entangled states is discussed. It is shown that the maximum entangled states are more robust than the partial entangled state over this type of channels

    Arithmetical Congruence Preservation: from Finite to Infinite

    Full text link
    Various problems on integers lead to the class of congruence preserving functions on rings, i.e. functions verifying aba-b divides f(a)f(b)f(a)-f(b) for all a,ba,b. We characterized these classes of functions in terms of sums of rational polynomials (taking only integral values) and the function giving the least common multiple of 1,2,,k1,2,\ldots,k. The tool used to obtain these characterizations is "lifting": if π ⁣:XY\pi\colon X\to Y is a surjective morphism, and ff a function on YY a lifting of ff is a function FF on XX such that πF=fπ\pi\circ F=f\circ\pi. In this paper we relate the finite and infinite notions by proving that the finite case can be lifted to the infinite one. For pp-adic and profinite integers we get similar characterizations via lifting. We also prove that lattices of recognizable subsets of ZZ are stable under inverse image by congruence preserving functions

    Spectral densities and partition functions of modular quantum systems as derived from a central limit theorem

    Full text link
    Using a central limit theorem for arrays of interacting quantum systems, we give analytical expressions for the density of states and the partition function at finite temperature of such a system, which are valid in the limit of infinite number of subsystems. Even for only small numbers of subsystems we find good accordance with some known, exact results.Comment: 6 pages, 4 figures, some steps added to derivation, accepted for publication in J. Stat. Phy

    Pattern formation in quantum Turing machines

    Get PDF
    We investigate the iteration of a sequence of local and pair unitary transformations, which can be interpreted to result from a Turing-head (pseudo-spin SS) rotating along a closed Turing-tape (MM additional pseudo-spins). The dynamical evolution of the Bloch-vector of SS, which can be decomposed into 2M2^{M} primitive pure state Turing-head trajectories, gives rise to fascinating geometrical patterns reflecting the entanglement between head and tape. These machines thus provide intuitive examples for quantum parallelism and, at the same time, means for local testing of quantum network dynamics.Comment: Accepted for publication in Phys.Rev.A, 3 figures, REVTEX fil

    Spatially Resolved Outflows in a Seyfert Galaxy at z = 2.39

    Full text link
    We present the first spatially resolved analysis of rest-frame optical and UV imaging and spectroscopy for a lensed galaxy at z = 2.39 hosting a Seyfert active galactic nucleus (AGN). Proximity to a natural guide star has enabled high signal-to-noise VLT SINFONI + adaptive optics observations of rest-frame optical diagnostic emission lines, which exhibit an underlying broad component with FWHM ~ 700 km/s in both the Balmer and forbidden lines. Measured line ratios place the outflow robustly in the region of the ionization diagnostic diagrams associated with AGN. This unique opportunity - combining gravitational lensing, AO guiding, redshift, and AGN activity - allows for a magnified view of two main tracers of the physical conditions and structure of the interstellar medium in a star-forming galaxy hosting a weak AGN at cosmic noon. By analyzing the spatial extent and morphology of the Ly-alpha and dust-corrected H-alpha emission, disentangling the effects of star formation and AGN ionization on each tracer, and comparing the AGN induced mass outflow rate to the host star formation rate, we find that the AGN does not significantly impact the star formation within its host galaxy.Comment: 16 pages, 5 figures, accepted for publication in Ap

    Entanglement Capacity of Nonlocal Hamiltonians : A Geometric Approach

    Full text link
    We develop a geometric approach to quantify the capability of creating entanglement for a general physical interaction acting on two qubits. We use the entanglement measure proposed by us for NN-qubit pure states (PRA \textbf{77}, 062334 (2008)). Our procedure reproduces the earlier results (PRL \textbf{87}, 137901 (2001)). The geometric method has the distinct advantage that it gives an experimental way to monitor the process of optimizing entanglement production.Comment: 8 pages, 1 figure

    Stability, Gain, and Robustness in Quantum Feedback Networks

    Full text link
    This paper concerns the problem of stability for quantum feedback networks. We demonstrate in the context of quantum optics how stability of quantum feedback networks can be guaranteed using only simple gain inequalities for network components and algebraic relationships determined by the network. Quantum feedback networks are shown to be stable if the loop gain is less than one-this is an extension of the famous small gain theorem of classical control theory. We illustrate the simplicity and power of the small gain approach with applications to important problems of robust stability and robust stabilization.Comment: 16 page
    corecore