19 research outputs found

    Raised FGF23 Correlates to Increased Mortality in Critical Illness, Independent of Vitamin D

    Get PDF
    BACKGROUND: Fibroblast Growth Factor (FGF23) is an endocrine hormone classically associated with the homeostasis of vitamin D, phosphate, and calcium. Elevated serum FGF23 is a known independent risk factor for mortality in chronic kidney disease (CKD) patients. We aimed to determine if there was a similar relationship between FGF23 levels and mortality in critically ill patients.METHODS: Plasma FGF23 levels were measured by ELISA in two separate cohorts of patients receiving vitamin D supplementation: critical illness patients (VITdAL-ICU trial, n = 475) and elective oesophagectomy patients (VINDALOO trial, n = 76). Mortality data were recorded at 30 and 180 days or at two years, respectively. FGF23 levels in a healthy control cohort were also measured ( n = 27). RESULTS: Elevated FGF23 (quartile 4 vs. quartiles 1-3) was associated with increased short-term (30 and 180 day) mortality in critical illness patients ( p &lt; 0.001) and long-term (two-year) mortality in oesophagectomy patients ( p = 0.0149). Patients who died had significantly higher FGF23 levels than those who survived: In the critical illness cohort, those who died had 1194.6 pg/mL (range 0-14,000), while those who survived had 120.4 pg/mL (range = 15-14,000) ( p = 0.0462). In the oesophagectomy cohort, those who died had 1304 pg/mL (range = 154-77,800), while those who survived had 644 pg/mL (range = 179-54,894) ( p &lt; 0.001). This was found to be independent of vitamin D or CKD status (critical illness p = 0.3507; oesophagectomy p = 0.3800). FGF23 levels in healthy controls were similar to those seen in oesophagectomy patients ( p = 0.4802). CONCLUSIONS: Elevated baseline serum FGF23 is correlated with increased mortality in both the post-oesophagectomy cohort and the cohort of patients with critical illness requiring intensive care admission. This was independent of vitamin D status, supplementation, or CKD status, which suggests the presence of vitamin D-independent mechanisms of FGF23 action during the acute and convalescent stages of critical illness, warranting further investigation.</p

    Dexamethasone impairs the expression of antimicrobial mediators in lipopolysaccharide-activated primary macrophages by inhibiting both expression and function of interferon β

    Get PDF
    Glucocorticoids potently inhibit expression of many inflammatory mediators, and have been widely used to treat both acute and chronic inflammatory diseases for more than seventy years. However, they can have several unwanted effects, amongst which immunosuppression is one of the most common. Here we used microarrays and proteomic approaches to characterise the effect of dexamethasone (a synthetic glucocorticoid) on the responses of primary mouse macrophages to a potent pro-inflammatory agonist, lipopolysaccharide (LPS). Gene ontology analysis revealed that dexamethasone strongly impaired the lipopolysaccharide-induced antimicrobial response, which is thought to be driven by an autocrine feedback loop involving the type I interferon IFNβ. Indeed, dexamethasone strongly and dose-dependently inhibited the expression of IFNβ by LPS-activated macrophages. Unbiased proteomic data also revealed an inhibitory effect of dexamethasone on the IFNβ-dependent program of gene expression, with strong down-regulation of several interferon-induced antimicrobial factors. Surprisingly, dexamethasone also inhibited the expression of several antimicrobial genes in response to direct stimulation of macrophages with IFNβ. We tested a number of hypotheses based on previous publications, but found that no single mechanism could account for more than a small fraction of the broad suppressive impact of dexamethasone on macrophage type I interferon signaling, underlining the complexity of this pathway. Preliminary experiments indicated that dexamethasone exerted similar inhibitory effects on primary human monocyte-derived or alveolar macrophages.</p

    Vitamin D to prevent lung injury following esophagectomy: A randomized, placebo-controlled trial

    Get PDF
    Objectives: Observational studies suggest an association between vitamin D deficiency and adverse outcomes of critical illness and identify it as a potential risk factor for the development of lung injury. To determine whether pre-operative administration of oral high-dose cholecalciferol ameliorates early acute lung injury post-operatively in adults undergoing elective esophagectomy. Design: A double-blind, randomized, placebo-controlled trial. Setting: Three large UK university hospitals. Patients: Seventy-nine adult patients undergoing elective esophagectomy were randomized. Intervention: A single oral preoperative (3-14 days) dose of 7.5mg (300,000IU; 15mls) cholecalciferol or matched placebo. Measurements and Main Results: Primary outcome was change in extravascular lung water index (EVLWI) at the end of esophagectomy. Secondary outcomes included PaO2:FiO2 ratio, development of lung injury, ventilator and organ-failure free days, 28 and 90 day survival, safety of cholecalciferol supplementation, plasma vitamin D status (25(OH)D, 1,25(OH)2D and vitamin D binding protein), pulmonary vascular permeability index (PVPI) and EVLWI day 1 postoperatively. An exploratory study measured biomarkers of alveolar-capillary inflammation and injury. Forty patients were randomized to cholecalciferol and 39 to placebo. There was no significant change in EVLWI at the end of the operation between treatment groups (placebo median 1.0[IQR 0.4 – 1.8] vs cholecalciferol median 0.4[IQR 0.4 – 1.2] ml/kg, p=0.059). Median PVPI values were significantly lower in the cholecalciferol treatment group (placebo 0.4[IQR 0 – 0.7] vs cholecalciferol 0.1[IQR -0.15 -0.35], p=0.027). Cholecalciferol treatment effectively increased 25(OH)D concentrations but surgery resulted in a decrease in 25(OH)D concentrations at day 3 in both arms. There was no difference in clinical outcomes. Conclusions: High-dose preoperative treatment with oral cholecalciferol was effective at increasing 25(OH)D concentrations, and reduced changes in postoperative PVPI but not EVLWI

    Impaired alveolar macrophage 11β-hydroxysteroid dehydrogenase type 1 reductase activity contributes to increased pulmonary inflammation and mortality in sepsis-related ARDS

    Get PDF
    BackgroundAcute Respiratory Distress Syndrome (ARDS) is a devastating pulmonary inflammatory disorder, commonly precipitated by sepsis. Glucocorticoids are immunomodulatory steroids that can suppress inflammation. Their anti-inflammatory properties within tissues are influenced by their pre-receptor metabolism and amplification from inactive precursors by 11β-hydroxysteroid dehydrogenase type-1 (HSD-1). We hypothesised that in sepsis-related ARDS, alveolar macrophage (AM) HSD-1 activity and glucocorticoid activation are impaired, and associated with greater inflammatory injury and worse outcomes.MethodsWe analysed broncho-alveolar lavage (BAL) and circulating glucocorticoid levels, AM HSD-1 reductase activity and Receptor for Advanced Glycation End-products (RAGE) levels in two cohorts of critically ill sepsis patients, with and without ARDS. AM HSD-1 reductase activity was also measured in lobectomy patients. We assessed inflammatory injury parameters in models of lung injury and sepsis in HSD-1 knockout (KO) and wild type (WT) mice.ResultsNo difference in serum and BAL cortisol: cortisone ratios are shown between sepsis patients with and without ARDS. Across all sepsis patients, there is no association between BAL cortisol: cortisone ratio and 30-day mortality. However, AM HSD-1 reductase activity is impaired in patients with sepsis-related ARDS, compared to sepsis patients without ARDS and lobectomy patients (0.075 v 0.882 v 0.967 pM/hr/106 AMs, p=0.004). Across all sepsis patients (with and without ARDS), impaired AM HSD-1 reductase activity is associated with defective efferocytosis (r=0.804, p=0.008) and increased 30-day mortality. AM HSD-1 reductase activity negatively correlates with BAL RAGE in sepsis patients with ARDS (r=-0.427, p=0.017). Following intra-tracheal lipopolysaccharide (IT-LPS) injury, HSD-1 KO mice demonstrate increased alveolar neutrophil infiltration, apoptotic neutrophil accumulation, alveolar protein permeability and BAL RAGE concentrations compared to WT mice. Caecal Ligation and Puncture (CLP) injury in HSD-1 KO mice results in greater peritoneal apoptotic neutrophil accumulation compared to WT mice.ConclusionsAM HSD-1 reductase activity does not shape total BAL and serum cortisol: cortisone ratios, however impaired HSD-1 autocrine signalling renders AMs insensitive to the anti-inflammatory effects of local glucocorticoids. This contributes to the decreased efferocytosis, increased BAL RAGE concentrations and mortality seen in sepsis-related ARDS. Upregulation of alveolar HSD-1 activity could restore AM function and improve clinical outcomes in these patients

    Extracellular Vesicles:A New Frontier for Research in Acute Respiratory Distress Syndrome

    No full text
    Recent research on extracellular vesicles (EVs) has provided new insights into pathogenesis and potential therapeutic options for acute respiratory distress syndrome (ARDS). EVs are membrane-bound anuclear structures that carry important intercellular communication mechanisms, allowing targeted transfer of diverse biologic cargo, including protein, mRNA, and microRNA, among several different cell types. In this review, we discuss the important role EVs play in both inducing and attenuating inflammatory lung injury in ARDS as well as in sepsis, the most important clinical cause of ARDS. We discuss the translational challenges that need to be overcome before EVs can also be used as prognostic biomarkers in patients with ARDS and sepsis. We also consider how EVs may provide a platform for novel therapeutics in ARDS

    Current status of lung transplantation

    No full text
    Lung transplantation is a well-established treatment option for selected patients with end-stage lung disease, leading to improved survival and improved quality of life. The last 20 years have seen a steady growth in number of lung transplantation procedures performed worldwide. The increase in clinical activity has been associated with tremendous progress in the understanding of cellular and molecular processes that limit both short- and long-term outcomes. This review gives a comprehensive overview of the current status of lung transplantation for the referring physician. It demonstrates that careful selection of potential recipients, optimisation of their condition prior to transplant, use of carefully assessed donor organs, excellent surgery and meticulous long-term follow-up are all essential ingredients in determining a successful outcome. </jats:p

    Positron emission tomography aids diagnosis of relapsing polychondritis

    No full text
    A 39-year-old man presented to the hospital in April 2011 with a 2-month history of tonsillitis, night sweats, fatigue, weight loss, shortness of breath on exertion and a dry cough. He was a non-smoker, previously fit and well with no regular medication. Examination of the respiratory, cardiovascular and gastrointestinal systems was normal; he appeared generally well. C reactive protein and erythrocyte sedimentation rate were raised. A CT of the thorax showed mediastinal thickening and mediastinal lymphadenopathy. Whole body (18)F-fluorodeoxyglucose positron emission tomography showed diffuse tracheobronchial activity. Tracheal and lymph node biopsies showed non-specific features. Lung function tests showed an obstructive picture. A diagnosis of relapsing polychondritis was made. Immunosuppressive treatment was started, initially with oral methotrexate and prednisolone, later progressing to intravenous methylprednisolone and intravenous cyclophosphamide. Repeat bronchoscopy showed improvement in inflammation; however, the patient's symptoms were not improved. The patient's symptoms and lung function currently remain stable on maintenance oral prednisolone

    Epithelial-mesenchymal transition in lung development and disease:does it exist and is it important?

    Get PDF
    Epithelial-mesenchymal transition (EMT) is a process when epithelial cells gradually transform into mesenchymal-like cells losing their epithelial functionality and characteristics. EMT is thought to be involved in the pathogenesis of numerous lung diseases ranging from developmental disorders, fibrotic tissue remodelling to lung cancer. The most important question-namely what is the importance and contribution of EMT in the pathogenesis of several chronic lung conditions (asthma, COPD, bronchiolitis obliterans syndrome and lung fibrosis)-is currently intensely debated. This review gives a brief insight into the mechanism and assessment methods of EMT in various pulmonary diseases and summarises the recent literature highlighting the controversial experimental data and conclusions
    corecore