502 research outputs found

    Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: A trait-based predictive framework

    Get PDF
    Anthropogenic nitrogen (N) deposition is exposing plants and their arbuscular mycorrhizal fungi (AMFs) to elevated N availability, often leading to shifts in communities of AMF. However, physiological trade-offs among AMF taxa in their response to N enrichment vs the ability to acquire other soil nutrients could have negative effects on plant and ecosystem productivity. It follows that information on the functional traits of AMF taxa can be used to generate predictions of their potential role in mediating ecosystem responses to N enrichment. Arbuscular mycorrhizal fungi taxa that produce extensive networks of external hyphae should forage for N and phosphorus (P) more effectively, but these services incur greater carbon (C) costs to the plant. If N enrichment ameliorates plant nutrient limitation, then plants may reduce C available for AMF, which in turn could eliminate AMF taxa with large extensive external hyphae from the soil community. As a result, the remaining AMF taxa may confer less P benefit to their host plants. Using a synthesis of data from the literature, we found that the ability of a taxon to persist in the face of increasing soil N availability was particularly high in isolates from the genus Glomus, but especially low among the Gigasporaceae. Across AMF genera, our data support the prediction that AMF with a tolerance for high soil N may confer a lower P benefit to their host plant. Relationships between high N tolerance and production of external hyphae were mixed. Synthesis. If the relationship between N tolerance and plant P benefit is widespread, then shifts in arbuscular mycorrhizal fungi communities associated with N deposition could have negative consequences for the ability of plants to acquire P and possibly other nutrients via a mycorrhizal pathway. Based on this relationship, we predict that arbuscular mycorrhizal fungi responses could constrain net primary productivity in P-limited ecosystems exposed to N enrichment. This prediction could be tested in future empirical and modelling studies

    On the relationship between stomatal characters and atmospheric CO2

    Full text link
    Leaf stomatal characters influence the response of terrestrial evapotranspiration to climate change and are used as proxies for the reconstruction of past atmospheric [CO2]. We examined the phenotypic response of stomatal index (SI), density (SD) and aperture (AP) to rising atmospheric CO2 in 15 species after four years exposure to a field CO2 gradient (200 to 550 μmol mol−1 atmospheric [CO2]) or at three Free Air CO2 Enrichment (FACE) sites. Along the CO2 gradient, SI and SD showed no evidence of a decline to increasing [CO2], while AP decreased slightly. There was no significant change in SI, SD or AP with CO2 across FACE experiments. Without evolutionary changes, SI and SD may not respond to atmospheric [CO2] in the field and are unlikely to decrease in a future high CO2 world

    Revealing natural relationships among arbuscular mycorrhizal fungi: culture line BEG47 represents Diversispora epigaea, not Glomus versiforme

    Get PDF
    Background: Understanding the mechanisms underlying biological phenomena, such as evolutionarily conservative trait inheritance, is predicated on knowledge of the natural relationships among organisms. However, despite their enormous ecological significance, many of the ubiquitous soil inhabiting and plant symbiotic arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are incorrectly classified. Methodology/Principal Findings: Here, we focused on a frequently used model AMF registered as culture BEG47. This fungus is a descendent of the ex-type culture-lineage of Glomus epigaeum, which in 1983 was synonymised with Glomus versiforme. It has since then been used as ‘G. versiforme BEG47’. We show by morphological comparisons, based on type material, collected 1860–61, of G. versiforme and on type material and living ex-type cultures of G. epigaeum, that these two AMF species cannot be conspecific, and by molecular phylogenetics that BEG47 is a member of the genus Diversispora. Conclusions: This study highlights that experimental works published during the last >25 years on an AMF named ‘G. versiforme’ or ‘BEG47’ refer to D. epigaea, a species that is actually evolutionarily separated by hundreds of millions of years from all members of the genera in the Glomerales and thus from most other commonly used AMF ‘laboratory strains’. Detailed redescriptions substantiate the renaming of G. epigaeum (BEG47) as D. epigaea, positioning it systematically in the order Diversisporales, thus enabling an evolutionary understanding of genetical, physiological, and ecological traits, relative to those of other AMF. Diversispora epigaea is widely cultured as a laboratory strain of AMF, whereas G. versiforme appears not to have been cultured nor found in the field since its original description

    Neural Stem Cells Achieve and Maintain Pluripotency without Feeder Cells

    Get PDF
    Background: Differentiated cells can be reprogrammed into pluripotency by transduction of four defined transcription factors. Induced pluripotent stem cells (iPS cells) are expected to be useful for regenerative medicine as well as basic research. Recently, the report showed that mouse embryonic fibroblasts (MEF) cells are not essential for reprogramming. However, in using fibroblasts as donor cells for reprogramming, individual fibroblasts that had failed to reprogram could function as feeder cells. Methodology/Principal Finding: Here, we show that adult mouse neural stem cells (NSCs), which are not functional feeder cells, can be reprogrammed into iPS cells using defined four factors (Oct4, Sox2, Klf4, and c-Myc) under feeder-free conditions. The iPS cells, generated from NSCs expressing the Oct4-GFP reporter gene, could proliferate for more than two months (passage 20). Generated and maintained without feeder cells, these iPS cells expressed pluripotency markers (Oct4 and Nanog), the promoter regions of Oct4 and Nanog were hypomethylated, could differentiated into to all three germ layers in vitro, and formed a germline chimera. These data indicate that NSCs can achieve and maintain pluripotency under feeder-free conditions. Conclusion/Significance: This study suggested that factors secreted by feeder cells are not essential in the initial/early stages of reprogramming and for pluripotency maintenance. This technology might be useful for a human system, as

    Dynamic single cell imaging of direct reprogramming reveals an early specifying event

    Get PDF
    available in PMC 2010 November 1.The study of induced pluripotency often relies on experimental approaches that average measurements across a large population of cells, the majority of which do not become pluripotent. Here we used high-resolution, time-lapse imaging to trace the reprogramming process over 2 weeks from single mouse embryonic fibroblasts (MEFs) to pluripotency factor–positive colonies. This enabled us to calculate a normalized cell-of-origin reprogramming efficiency that takes into account only the initial MEFs that respond to form reprogrammed colonies rather than the larger number of final colonies. Furthermore, this retrospective analysis revealed that successfully reprogramming cells undergo a rapid shift in their proliferative rate that coincides with a reduction in cellular area. This event occurs as early as the first cell division and with similar kinetics in all cells that form induced pluripotent stem (iPS) cell colonies. These data contribute to the theoretical modeling of reprogramming and suggest that certain parts of the reprogramming process follow defined rather than stochastic steps.Burroughs Wellcome Fund (Career Award at the Scientific Interface)Pew Charitable TrustsMassachusetts Life Sciences Center (New Investigator grant)Broad Institute (Investigator of the Merkin Foundation for Stem Cell Research)Howard Hughes Medical Institute (Early Career Scientist)Alfred P. Sloan FoundationNational Institutes of Health (U.S.) (Pioneer Award

    Derivation of Induced Pluripotent Stem Cells from Human Peripheral Blood T Lymphocytes

    Get PDF
    Induced pluripotent stem cells (iPSCs) hold enormous potential for the development of personalized in vitro disease models, genomic health analyses, and autologous cell therapy. Here we describe the generation of T lymphocyte-derived iPSCs from small, clinically advantageous volumes of non-mobilized peripheral blood. These T-cell derived iPSCs (“TiPS”) retain a normal karyotype and genetic identity to the donor. They share common characteristics with human embryonic stem cells (hESCs) with respect to morphology, pluripotency-associated marker expression and capacity to generate neurons, cardiomyocytes, and hematopoietic progenitor cells. Additionally, they retain their characteristic T-cell receptor (TCR) gene rearrangements, a property which could be exploited for iPSC clone tracking and T-cell development studies. Reprogramming T-cells procured in a minimally invasive manner can be used to characterize and expand donor specific iPSCs, and control their differentiation into specific lineages

    Differential Coupling of Self-Renewal Signaling Pathways in Murine Induced Pluripotent Stem Cells

    Get PDF
    The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs), exhibiting properties similar to those of embryonic stem cells (ESCs), has attracted much attention, with many studies focused on improving efficiency of derivation and unraveling the mechanisms of reprogramming. Despite this widespread interest, our knowledge of the molecular signaling pathways that are active in iPSCs and that play a role in controlling their fate have not been studied in detail. To address this shortfall, we have characterized the influence of different signals on the behavior of a model mouse iPSC line. We demonstrate significant responses of this iPSC line to the presence of serum, which leads to profoundly enhanced proliferation and, depending on the medium used, a reduction in the capacity of the iPSCs to self-renew. Surprisingly, this iPSC line was less sensitive to withdrawal of LIF compared to ESCs, exemplified by maintenance of expression of a Nanog-GFP reporter and enhanced self-renewal in the absence of LIF. While inhibition of phosphoinositide-3 kinase (PI3K) signaling decreased iPSC self-renewal, inhibition of Gsk-3 promoted it, even in the absence of LIF. High passages of this iPSC line displayed altered characteristics, including genetic instability and a reduced ability to self-renew. However, this second feature could be restored upon inhibition of Gsk-3. Collectively, our data suggest modulation of Gsk-3 activity plays a key role in the control of iPSC fate. We propose that more careful consideration should be given to characterization of the molecular pathways that control the fate of different iPSC lines, since perturbations from those observed in naïve pluripotent ESCs could render iPSCs and their derivatives susceptible to aberrant and potentially undesirable behaviors

    Two Factor Reprogramming of Human Neural Stem Cells into Pluripotency

    Get PDF
    BACKGROUND:Reprogramming human somatic cells to pluripotency represents a valuable resource for the development of in vitro based models for human disease and holds tremendous potential for deriving patient-specific pluripotent stem cells. Recently, mouse neural stem cells (NSCs) have been shown capable of reprogramming into a pluripotent state by forced expression of Oct3/4 and Klf4; however it has been unknown whether this same strategy could apply to human NSCs, which would result in more relevant pluripotent stem cells for modeling human disease. METHODOLOGY AND PRINCIPAL FINDINGS:Here, we show that OCT3/4 and KLF4 are indeed sufficient to induce pluripotency from human NSCs within a two week time frame and are molecularly indistinguishable from human ES cells. Furthermore, human NSC-derived pluripotent stem cells can differentiate into all three germ lineages both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE:We propose that human NSCs represent an attractive source of cells for producing human iPS cells since they only require two factors, obviating the need for c-MYC, for induction into pluripotency. Thus, in vitro human disease models could be generated from iPS cells derived from human NSCs

    Virus-free induction of pluripotency and subsequent excision of reprogramming factors

    Get PDF
    Reprogramming of somatic cells to pluripotency, thereby creating induced pluripotent stem (iPS) cells, promises to transform regenerative medicine. Most instances of direct reprogramming have been achieved by forced expression of defined factors using multiple viral vectors1-7. However, such iPS cells contain a large number of viral vector integrations1,8, any one of which could cause unpredictable genetic dysfunction. While c-Myc is dispensable for reprogramming9,10, complete elimination of the other exogenous factors is also desired since ectopic expression of either Oct4 or Klf4 can induce dysplasia11,12. Two transient transfection reprogramming methods have been published to address this issue13,14. However, the efficiency of either approach is extremely low, and neither has thus far been applied successfully to human cells. Here we show that non-viral transfection of a single multiprotein expression vector, which comprises the coding sequences of c-Myc​,​ Klf4​,​ Oct4 and Sox2 linked with 2A peptides, can reprogram both mouse and human fibroblasts. Moreover, the transgene can be removed once reprogramming has been achieved. iPS cells produced with this non-viral vector show robust expression of pluripotency markers, indicating a reprogrammed state confirmed functionally by in vitro differentiation assays and formation of adult chimeric mice. When the single vector reprogramming system was combined with a piggyBac transposon15,16 we succeeded in establishing reprogrammed human cell lines from embryonic fibroblasts with robust expression of pluripotency markers. This system minimizes genome modification in iPS cells and enables complete elimination of exogenous reprogramming factors, efficiently providing iPS cells that are applicable to regenerative medicine, drug screening and the establishment of disease models

    Reprogramming Primordial Germ Cells into Pluripotent Stem Cells

    Get PDF
    Background: Specification of primordial germ cells (PGCs) results in the conversion of pluripotent epiblast cells into monopotent germ cell lineage. Blimp1/Prmt5 complex plays a critical role in the specification and maintenance of the early germ cell lineage. However, PGCs can be induced to dedifferentiate back to a pluripotent state as embryonic germ (EG) cells when exposed to exogenous signaling molecules, FGF-2, LIF and SCF. Methodology and Principal Findings: Here we show that Trichostatin A (TSA), an inhibitor of histone deacetylases, is a highly potent agent that can replace FGF-2 to induce dedifferentiation of PGCs into EG cells. A key early event during dedifferentiation of PGCs in response to FGF-2 or TSA is the down-regulation of Blimp1, which reverses and apparently relieves the cell fate restriction imposed by it. Notably, the targets of Blimp1, which include c-Myc and Klf-4, which represent two of the key factors known to promote reprogramming of somatic cells to pluripotent state, are up-regulated. We also found early activation of the LIF/Stat-3 signaling pathway with the translocation of Stat-3 into the nucleus. By contrast, while Prmt5 is retained in EG cells, it translocates from the nucleus to the cytoplasm where it probably has an independent role in regulating pluripotency. Conclusions/Significance: We propose that dedifferentiation of PGCs into EG cells may provide significant mechanistic insights on early events associated with reprogramming of committed cells to a pluripotent state
    corecore