628 research outputs found
Mechanical Properties and Corrosion Behavior of Low Carbon Steel Weldments
This research involves studying the mechanical properties and corrosion behavior of low carbon steel (0.077wt% C) before and after welding using Arc, MIG and TIG welding. The mechanical properties include testing of microhardness, tensile strength, the results indicate that microhardness of TIG, MIG welding is more than arc welding, while tensile strength in arc welding more than TIG and MIG.The corrosion behavior of low carbon weldments was performed by potentiostat at scan rate 3mV.sec-1 in 3.5% NaCl to show the polarization resistance and calculate the corrosion rate from data of linear polarization by Tafel extrapolation method. The results indicate that the TIG welding increase the corrosion current density and anodic Tafel slop, while decrease the polarization resistance compared with unwelded low carbon steel. Cyclic polarization were measured to show resistance of specimens to pitting corrosion and to calculate the forward and reveres potentials. The results show shifting the forward, reverse and pitting potentials toward active direction for weldments samples compared with unwelded sample
New Iterative Method For Solving Nonlinear partial Differential Equations
This paper presents an approximate analytical solution of the non-linear Benjamin-Bona-Mahony equation, Cahn Hilliard equation, Gardner equation, linear Klein Gordon equation
Available nutrients and some soil properties of El-Qasr soils, El-Dakhla Oasis, Egypt
Ten surface soil samples (0-30 cm) were collected from El-Qasr village, El-Dakhla Oasis, New Valley, Egypt to investigate some soil properties and nutrients availability. The results revealed that most of the soil texture varied clay loam to sandy clay loam. The mean values of bulk density (BD), soil pH, electric conductivity (EC), saturation percentage (SP), calcium carbonate (CaCO3), cation exchangeable capacity (CEC), organic matter (OM), and sodium adsorption ratio (SAR) were 1.42 gcm3, 7.89, 3.34 dSm-1, 52.10%, 7.46 %, 28.08 cmol (+) kg-1, and 3.65, respectively. The mean values of N, P, and K were 99.37, 31.32, 121.93, mg/kg, respectively. Meanwhile, the mean values of Fe, Mn, Cu and Zn were 27.39, 18.38, 0.48, and 3.48 mgkg-1, respectively. The correlations coefficient of NPK was strongly positively significant relationship with clay, OM, CEC, and SAR, but they negatively correlated with pH, EC, CaCO3. Meanwhile, Fe, Mn, and Cu were positively correlated with EC, CaCO3, while they negatively correlated with clay, pH, OM, CEC, and SAR. Also, Zn was negatively correlated with clay, pH, EC, OM, and CaCO3, and it positively correlated with CEC and SAR
Numerical Studies for Solving Fractional Riccati Differential Equation
In this paper, finite difference method (FDM) and Pade\u27-variational iteration method (Pade\u27- VIM) are successfully implemented for solving the nonlinear fractional Riccati differential equation. The fractional derivative is described in the Caputo sense. The existence and the uniqueness of the proposed problem are given. The resulting nonlinear system of algebraic equations from FDM is solved by using Newton iteration method; moreover the condition of convergence is verified. The convergence\u27s domain of the solution is improved and enlarged by Pade\u27-VIM technique. The results obtained by using FDM is compared with Pade\u27-VIM. It should be noted that the Pade\u27-VIM is preferable because it always converges to the solution even for large domain
Sumudu decomposition method for Solving fractional-order Logistic differential equation
In This paper, we propose a numerical algorithm for solving nonlinear fractional-order Logistic differential equation (FLDE) by using Sumudu decomposition method (SDM). This method is a combination of the Sumudu transform method and decomposition method. We have apply the concepts of fractional calculus to the well known population growth modle inchaotic dynamic. The fractional derivative is described in the Caputosense. The numerical results shows that the approach is easy to implement and accurate when applied to various fractional differentional equations.
 
Multifocus Images Fusion Based On Homogenity and Edges Measures
Image fusion is one of the most important techniques in digital image processing, includes the development of software to make the integration of multiple sets of data for the same location; It is one of the new fields adopted in solve the problems of the digital image, and produce high-quality images contains on more information for the purposes of interpretation, classification, segmentation and compression, etc. In this research, there is a solution of problems faced by different digital images such as multi focus images through a simulation process using the camera to the work of the fuse of various digital images based on previously adopted fusion techniques such as arithmetic techniques (BT, CNT and MLT), statistical techniques (LMM, RVS and WT) and spatial techniques (HPFA, HFA and HFM). As these techniques have been developed and build programs using the language MATLAB (b 2010). In this work homogeneity criteria have been suggested for evaluation fused digital image's quality, especially fine details. This criterion is correlation criteria to guess homogeneity in different regions within the image by taking a number of blocks of different regions in the image and different sizes and work shifted blocks per pixel. As dependence was on traditional statistical criteria such as (mean, standard deviation, and signal to noise ratio, mutual information and spatial frequency) and compared with the suggested criteria to the work. The results showed that the evaluation process was effective and well because it took into measure the quality of the homogenous regions
Modelling and Digital Mapping of the Infiltration Characteristics of Major Agricultural Soils
A study was attempted to assess the infiltration characteristics of major soils of Sohag governorate, Egypt. Twelve soil profiles were exposed and morphologically examined to represent the soils of the study area. Horizon-wise soil samples were taken and analyzed for physical and chemical properties. The infiltration field measurements were made for five hours using a double-ring infiltrometer, and the empirical Kostiakov’s infiltration model was applied. The results indicated that the soils were classified as Aridisols, Entisols, and Vertisols. Initial infiltration rates ranged between 0.80 and 6.67 m/day. The highest values (6.47 and 6.67 m/day) were observed in locations No. 11 and 12, where the coarse texture prevailed. The fine texture soils recorded the lowest values (0.80, 0.81, and 0.82 m/day) in locations No. 8, 4, and 7, respectively. Infiltration rate is classified as very rapid, rapid, moderately rapid, and moderate. A correlation was found between steady infiltration rates and sand, hydraulic conductivity, CaCO3 content, and organic carbon in order r=0.95, 0.93, 0.74, and 0.79. However, were found to be negatively correlated with the infiltration rates (r= -0.80, -0.91, -0.95, -0.97, -0.64, -0.91, respectively. Whereas bulk density showed an insignificant relationship (p=0.05) with infiltration rates in the order of r=0.13. GIS environment was used to generate different maps of soil parameters, and finally, the infiltration map was produced for the study area
Ureteroarterial Fistula
Ureteral-iliac artery fistula (UIAF) is a rare life threatening cause of hematuria. The increasing frequency is attributed to increasing use of ureteral stents. A 68-year-old female presented with gross hematuria. She had prior low anterior resection for rectal cancer and a retained ureteral stent. CT abdomen and pelvis showed a large recurrent pelvic mass and a retained stent. The patient underwent cystoscopy which showed a normal bladder. Upon removal of the stent, brisk bleeding was noted coming from the ureteral orifice. Antegrade pyelogram was done which revealed a UIAF. Angiography was done and a covered stent was placed. Multiple treatment options are available. All must consider management of the arterial and ureteral side. The arterial side may be addressed by primary open repair, embolization with extra-anatomic vascular reconstruction, or endovascular stenting. The ureter can be managed with nephroureterectomy, ureteral reconstruction, placement of a nephrostomy tube, or ureteral stenting. Being minimally invasive, we believe that endovascular stenting should be the preferred therapeutic option as it also corrects the source of bleeding while preserving distal blood flow
- …