2 research outputs found

    Adaptive access and rate control of CSMA for energy, rate and delay optimization

    Get PDF
    In this article, we present a cross-layer adaptive algorithm that dynamically maximizes the average utility function. A per stage utility function is defined for each link of a carrier sense multiple access-based wireless network as a weighted concave function of energy consumption, smoothed rate, and smoothed queue size. Hence, by selecting weights we can control the trade-off among them. Using dynamic programming, the utility function is maximized by dynamically adapting channel access, modulation, and coding according to the queue size and quality of the time-varying channel. We show that the optimal transmission policy has a threshold structure versus the channel state where the optimal decision is to transmit when the wireless channel state is better than a threshold. We also provide a queue management scheme where arrival rate is controlled based on the link state. Numerical results show characteristics of the proposed adaptation scheme and highlight the trade-off among energy consumption, smoothed data rate, and link delay.This study was supported in part by the Spanish Government, Ministerio de Ciencia e Innovación (MICINN), under projects COMONSENS (CSD2008-00010, CONSOLIDER-INGENIO 2010 program) and COSIMA (TEC2010-19545-C04-03), in part by Iran Telecommunication Research Center under contract 6947/500, and in part by Iran National Science Foundation under grant number 87041174. This study was completed while M. Khodaian was at CEIT and TECNUN (University of Navarra)
    corecore