23 research outputs found

    Theme-weighted Ranking of Keywords from Text Documents using Phrase Embeddings

    Full text link
    Keyword extraction is a fundamental task in natural language processing that facilitates mapping of documents to a concise set of representative single and multi-word phrases. Keywords from text documents are primarily extracted using supervised and unsupervised approaches. In this paper, we present an unsupervised technique that uses a combination of theme-weighted personalized PageRank algorithm and neural phrase embeddings for extracting and ranking keywords. We also introduce an efficient way of processing text documents and training phrase embeddings using existing techniques. We share an evaluation dataset derived from an existing dataset that is used for choosing the underlying embedding model. The evaluations for ranked keyword extraction are performed on two benchmark datasets comprising of short abstracts (Inspec), and long scientific papers (SemEval 2010), and is shown to produce results better than the state-of-the-art systems.Comment: preprint for paper accepted in Proceedings of 1st IEEE International Conference on Multimedia Information Processing and Retrieva

    A Multimodal Approach to Predict Social Media Popularity

    Full text link
    Multiple modalities represent different aspects by which information is conveyed by a data source. Modern day social media platforms are one of the primary sources of multimodal data, where users use different modes of expression by posting textual as well as multimedia content such as images and videos for sharing information. Multimodal information embedded in such posts could be useful in predicting their popularity. To the best of our knowledge, no such multimodal dataset exists for the prediction of social media photos. In this work, we propose a multimodal dataset consisiting of content, context, and social information for popularity prediction. Specifically, we augment the SMPT1 dataset for social media prediction in ACM Multimedia grand challenge 2017 with image content, titles, descriptions, and tags. Next, in this paper, we propose a multimodal approach which exploits visual features (i.e., content information), textual features (i.e., contextual information), and social features (e.g., average views and group counts) to predict popularity of social media photos in terms of view counts. Experimental results confirm that despite our multimodal approach uses the half of the training dataset from SMP-T1, it achieves comparable performance with that of state-of-the-art.Comment: Preprint version for paper accepted in Proceedings of 1st IEEE International Conference on Multimedia Information Processing and Retrieva

    #MeTooMA: Multi-Aspect Annotations of Tweets Related to the MeToo Movement

    Full text link
    In this paper, we present a dataset containing 9,973 tweets related to the MeToo movement that were manually annotated for five different linguistic aspects: relevance, stance, hate speech, sarcasm, and dialogue acts. We present a detailed account of the data collection and annotation processes. The annotations have a very high inter-annotator agreement (0.79 to 0.93 k-alpha) due to the domain expertise of the annotators and clear annotation instructions. We analyze the data in terms of geographical distribution, label correlations, and keywords. Lastly, we present some potential use cases of this dataset. We expect this dataset would be of great interest to psycholinguists, socio-linguists, and computational linguists to study the discursive space of digitally mobilized social movements on sensitive issues like sexual harassment.Comment: Preprint of paper accepted at ICWSM 202
    corecore