109 research outputs found

    Histopathological diagnosis of Japanese spotted fever using formalin-fixed, paraffin-embedded skin biopsy specimens Usefulness of immunohistochemistry and real-time PCR analysis

    Get PDF
    AbstractJapanese spotted fever (JSF) is caused by Rickettsia japonica, and lethal cases are reported yearly in southwest Japan. We thus established the method of diagnosing JSF by immunohistochemistry (IHC) and real-time PCR (RT-PCR) using formalin-fixed, paraffin-embedded skin biopsy specimens. Two monoclonal antibodies were used for IHC, and the 17k genus common antigen gene served as the target of RT-PCR. We collected skin biopsy (n = 61) and autopsy (n = 1) specimens from 50 patients clinically suspected of JSF. Immunohistochemically, the rickettsial antigens were localized as coarse dots in the cytoplasm of endothelial cells and macrophages. Thirty-one seropositive cases plus one autopsy case (group A) and nine seronegative cases but with positive IHC and/or RT-PCR (group B) were judged as JSF. Nine cases were regarded as non-JSF disorders based on negative serology, IHC and RT-PCR (group C). Of 50 biopsies (eschar 34, eruptions 10, and scabs 6) from groups A and B, IHC and RT-PCR positivities were 94% (32/34) and 62% (21/34) for eschar, 80% (8/10) and 30% (3/10) for eruptions, and 33% (2/6) and 50% (3/6) for scabs. For IHC, eschar was most suitable, and scabs were insufficient. Unexpectedly, 18 biopsies happened to be fixed in 100% formalin, and this lowered the detection rate by RT-PCR, but IHC was tolerant. Sequence analysis using five skin biopsy specimens confirmed a 114 bp DNA stretch homologous to that reported for the target gene of R. japonica. In 26 (84%) of the 31 seropositive patients, the diagnosis was made by IHC and/or RT-PCR earlier than serology

    Phosphorylated Smad2 in Advanced Stage Gastric Carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transforming growth factor β (TGFβ) receptor signaling is closely associated with the invasion ability of gastric cancer cells. Although Smad signal is a critical integrator of TGFβ receptor signaling transduction systems, not much is known about the role of Smad2 expression in gastric carcinoma. The aim of the current study is to clarify the role of phosphorylated Smad2 (p-Smad2) in gastric adenocarcinomas at advanced stages.</p> <p>Methods</p> <p>Immunohistochemical staining with anti-p-Smad2 was performed on paraffin-embedded specimens from 135 patients with advanced gastric adenocarcinomas. We also evaluated the relationship between the expression levels of p-Smad2 and clinicopathologic characteristics of patients with gastric adenocarcinomas.</p> <p>Results</p> <p>The p-Smad2 expression level was high in 63 (47%) of 135 gastric carcinomas. The p-Smad2 expression level was significantly higher in diffuse type carcinoma (p = 0.007), tumours with peritoneal metastasis (p = 0.017), and tumours with lymph node metastasis (p = 0.047). The prognosis for p-Smad2-high patients was significantly (p = 0.035, log-rank) poorer than that of p-Smad2-low patients, while a multivariate analysis revealed that p-Smad2 expression was not an independence prognostic factor.</p> <p>Conclusion</p> <p>The expression of p-Smad2 is associated with malignant phenotype and poor prognosis in patients with advanced gastric carcinoma.</p

    The clinical application of electrical impedance technology in the detection of malignant neoplasms: a systematic review

    Get PDF
    Background: Electrical impedance technology has been well established for the last 20 years. Recently research has begun to emerge into its potential uses in the detection and diagnosis of pre-malignant and malignant conditions. The aim of this study was to systematically review the clinical application of electrical impedance technology in the detection of malignant neoplasms. Methods: A search of Embase Classic, Embase and Medline databases was conducted from 1980 to 22/02/2018 to identify studies reporting on the use of bioimpedance technology in the detection of pre-malignant and malignant conditions. The ability to distinguish between tissue types was defined as the primary endpoint, and other points of interest were also reported. Results: 731 articles were identified, of which 51 reported sufficient data for analysis. These studies covered 16 different cancer subtypes in a total of 7035 patients. As the studies took various formats, a qualitative analysis of each cancer subtype’s data was undertaken. All the studies were able to show differences in electrical impedance and/or related metrics between malignant and normal tissue. Conclusions: Electrical impedance technology provides a novel method for the detection of malignant tissue, with large studies of cervical, prostate, skin and breast cancers showing encouraging results. Whilst these studies provide promising insights into the potential of this technology as an adjunct in screening, diagnosis and intra-operative margin assessment, customised development as well as multi-centre clinical trials need to be conducted before it can be reliably employed in the clinical detection of malignant tissue

    Subsurface interactions of actinide species and microorganisms: Implications for the bioremediation of actinide-organic mixtures

    Full text link

    Removal of radioactive cesium, strontium, and iodine from natural waters using bentonite, zeolite, and activated carbon

    Get PDF
    Cs-134, Sr-85, and I-131 were produced by neutron irradiation of CsCl, SrCl2, and K2TeO3, respectively, using the Kyoto University Reactor. These radioactive nuclides were added to river water and seawater to prepare artificially contaminated samples, and the removal of these nuclides using bentonite, zeolite, and activated carbon was then investigated. In the river water samples, Cs-134 and Sr-85 were successfully removed using bentonite and zeolite, and I-131 was removed using activated carbon. In the seawater samples, Cs-134 was removed using bentonite and zeolite, whereas Sr-85 and I-131 were hardly removed at all by these adsorbents

    Removal of radioactive cesium, strontium, and iodine from natural waters using bentonite, zeolite, and activated carbon

    Get PDF
    Cs-134, Sr-85, and I-131 were produced by neutron irradiation of CsCl, SrCl2, and K2TeO3, respectively, using the Kyoto University Reactor. These radioactive nuclides were added to river water and seawater to prepare artificially contaminated samples, and the removal of these nuclides using bentonite, zeolite, and activated carbon was then investigated. In the river water samples, Cs-134 and Sr-85 were successfully removed using bentonite and zeolite, and I-131 was removed using activated carbon. In the seawater samples, Cs-134 was removed using bentonite and zeolite, whereas Sr-85 and I-131 were hardly removed at all by these adsorbents

    New dating method: Groundwater residence time estimated from the 4He accumulation rate calibrated by using cosmogenic and subsurface-produced 36Cl

    No full text
    Groundwater contains dissolved He, and its concentration increases with the residence time of the groundwater. Thus, if the 4He accumulation rate is constant, the dissolved 4He concentration in ground-water is equivalent to the residence time. Since accumulation mechanisms are not easily separated in the field, we estimate the total He accumulation rate during the half-life of 36Cl (3.01 × 105 years). We estimated the 4He accumulation rate, calibrated using both cosmogenic and subsurface-produced 36Cl, in the Great Artesian Basin (GAB), Australia, and the subsurface-produced 36Cl increase at the Äspö Hard Rock Laboratory, Sweden. 4He accumulation rates range from (1.9±0.3) × 10−11 to (15±6) × 10−11 ccSTP·cm−3·y−1 in GAB and (1.8 ±0.7) × 10−8 ccSTP·cm−3·y−1 at Äspö. We confirmed a ground-water flow with a residence time of 0.7-1.06 Ma in GAB and stagnant groundwater with the long residence time of 4.5 Ma at Äspö. Therefore, the groundwater residence time can be deduced from the dissolved 4He concentration and the 4He accumulation rate calibrated by 36Cl, provided that 4He accumulation, groundwater flow, and other geo-environmental conditions have remained unchanged for the required amount of geological time
    corecore