310 research outputs found

    EEOC v. Nevada Restaurant Services

    Get PDF

    First-Principle Dynamic Electro-Thermal Numerical Model of a Scanning Radiometer for Earth Radiation Budget Applications

    Get PDF
    Low Earth Observing instruments that are used to monitor the incoming solar and outgoing long wave radiation have been a crucial part of studying the Earths radiation budget for the past three decades. These instruments go through several robust design phases followed by vigorous ground calibration campaigns to set their baseline characterization spectrally, spatially, temporally and radiometrically. The knowledge from building and calibrating these instruments has aided in technology advancements and the need for developing more accurate instruments has increased. In order to understand the on-ground instrument performance, NASA Langley Research Center has partnered with the Thermal Radiation Group of Virginia Tech to develop a first-principle, dynamic, electrothermal, numerical model of a scanning radiometer that can be used to enhance the interpretation of an Earth radiation budget-like instrument on orbit. This paper will summarize the current efforts of developing this high-fidelity end-to-end model and also highlight how it can be applied to an Earth radiation budget instrument

    Cross-Cultural Field Placements: Student Teachers Learning From Schools and Communities

    Get PDF
    The student teaching experience is typically characterized by a collaboration of school and university-cooperating teacher and university supervisor- to prepare novice educators for the instructional, managerial, and disciplinary demands of classroom teaching. Less often are individuals and groups outside of the immediate school environment perceived as active and important contributors to learning outcomes and professional development for student teachers. However, an increasing number of teacher educators are addressing the role of the community in providing student teachers with information and insights that will enhance the classroom experience in vital ways

    Thermoelectric transport with electron-phonon coupling and electron-electron interaction in molecular junctions

    Full text link
    Within the framework of nonequilibrium Green's functions, we investigate the thermoelectric transport in a single molecular junction with electron-phonon and electron-electron interactions. By transforming into a displaced phonon basis, we are able to deal with these interactions non-perturbatively. Then, by invoking the weak tunneling limit, we are able to calculate the thermoelectricity. Results show that at low temperatures, resonances of the thermoelectric figure of merit ZT occur around the sides of resonances of electronic conductance but drops dramatically to zero at exactly these resonant points. We find ZT can be enhanced by increasing electron-phonon coupling and Coulomb repulsion, and an optimal enhancement is obtained when these two interactions are competing. Our results indicate a great potential for single-molecular-junctions as good thermoelectric devices over a wide range of temperatures.Comment: 7+ pages, 3 figures, with updated appendix. Accepted by PR

    Development of Fuses for Protection of Geiger-Mode Avalanche Photodiode Arrays

    Get PDF
    Current-limiting fuses composed of Ti/Al/Ni were developed for use in Geiger-mode avalanche photodiode arrays for each individual pixel in the array. The fuses were designed to burn out at ∼4.5 × 10[superscript −3] A and maintain post-burnout leakage currents less than 10[superscript −7] A at 70 V sustained for several minutes. Experimental fuse data are presented and successful incorporation of the fuses into a 256 × 64 pixel InP-based Geiger-mode avalanche photodiode array is reported

    Thin film growth of semiconducting Mg2Si by codeposition

    Get PDF
    Includes bibliographical references (page 1088).Ultrahigh vacuum evaporation of magnesium onto a hot silicon substrate (⩾200 °C), with the intention of forming a Mg2Si thin film by reaction, does not result in any accumulation of magnesium or its silicide. On the other hand, codeposition of magnesium with silicon at 200 °C, using a magnesium-rich flux ratio, gives a stoichiometric Mg2Si film which can be grown several hundreds of nm thick. The number of magnesium atoms which condense is equal to twice the number of silicon atoms which were deposited; all the silicon condenses while the excess magnesium in the flux desorbs. The Mg2Si layers thus obtained are polycrystalline with a (111) texture. From the surface roughness analysis, a self-affine growth mode with a roughness exponent equal to 1 is deduced

    User Guide for Luminescence Sampling in Archaeological and Geological Context

    Get PDF
    Luminescence dating provides a direct age estimate of the time of last exposure of quartz or feldspar minerals to light or heat and has been successfully applied to deposits, rock surfaces, and fired materials in a number of archaeological and geological settings. Sampling strategies are diverse and can be customized depending on local circumstances, although all sediment samples need to include a light-safe sample and material for dose-rate determination. The accuracy and precision of luminescence dating results are directly related to the type and quality of the material sampled and sample collection methods in the field. Selection of target material for dating should include considerations of adequacy of resetting of the luminescence signal (optical and thermal bleaching), the ability to characterize the radioactive environment surrounding the sample (dose rate), and the lack of evidence for post-depositional mixing (bioturbation in soils and sediment). Sample strategies for collection of samples from sedimentary settings and fired materials are discussed. This paper should be used as a guide for luminescence sampling and is meant to provide essential background information on how to properly collect samples and on the types of materials suitable for luminescence dating. La datación por luminiscencia proporciona una estimación directa de la edad del último momento en el que el cuarzo o los minerales de feldespato se expusieron a la luz o al calor y que se ha aplicado exitosamente a depósitos, superficies rocosas y materiales expuestos al fuego en distintos contextos arqueológicos y geológicos. Las estrategias de muestreo son diversas y pueden ser individualizadas dependiendo de las circunstancias locales, aunque todas las muestras de sedimentos deben incluir una muestra segura que no haya sido expuesta a la luz y material para calcular la tasa de la dosis. La exactitud y precisión de los resultados de la datación por luminiscencia están directamente relacionadas con el tipo y la calidad de los materiales muestreados y los métodos de recolección de muestras en el campo. La elección del material de estudio para su datación debe incluir las siguientes consideraciones en torno a la idoneidad de poder reposicionar la señal de luminiscencia (blanqueador óptico y térmico), la capacidad de caracterizar el ambiente radiactivo que rodea la muestra (la tasa de la dosis) y el que no exista evidencia de una alteración posdeposicional (bioperturbación en suelos y sedimentos). Se discuten las estrategias de muestreo para la recolección de muestras de contextos sedimentarios y de materiales expuestos al fuego. Este artículo debe utilizarse como una guía para el muestreo por luminiscencia y tiene la intención de proveer información básica de cómo recolectar muestras y sobre los tipos de materiales apropiados para la datación por luminiscencia

    Thermal Dependence of the Apparent K

    Full text link

    Stable Code Technical Report

    Full text link
    We introduce Stable Code, the first in our new-generation of code language models series, which serves as a general-purpose base code language model targeting code completion, reasoning, math, and other software engineering-based tasks. Additionally, we introduce an instruction variant named Stable Code Instruct that allows conversing with the model in a natural chat interface for performing question-answering and instruction-based tasks. In this technical report, we detail the data and training procedure leading to both models. Their weights are available via Hugging Face for anyone to download and use at https://huggingface.co/stabilityai/stable-code-3b and https://huggingface.co/stabilityai/stable-code-instruct-3b. This report contains thorough evaluations of the models, including multilingual programming benchmarks, and the MT benchmark focusing on multi-turn dialogues. At the time of its release, Stable Code is the state-of-the-art open model under 3B parameters and even performs comparably to larger models of sizes 7 billion and 15 billion parameters on the popular Multi-PL benchmark. Stable Code Instruct also exhibits state-of-the-art performance on the MT-Bench coding tasks and on Multi-PL completion compared to other instruction tuned models. Given its appealing small size, we also provide throughput measurements on a number of edge devices. In addition, we open source several quantized checkpoints and provide their performance metrics compared to the original model

    Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112

    Get PDF
    Citation: Reddy, S. K., Liu, S., Rudd, J. C., Xue, Q., Payton, P., Finlayson, S. A., … Lu, N. (2014). Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112. Retrieved from http://krex.ksu.eduHard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Cultivars TAM 111 and TAM 112 are widely cultivated in the region, share parentage and showed superior but distinct adaption mechanisms under water-deficit (WD) conditions. Nevertheless, the physiological and molecular basis of their adaptation remains unknown. A greenhouse study was conducted to understand the differences in the physiological and transcriptomic responses of TAM 111 and TAM 112 to WD stress. Whole-plant data indicated that TAM 112 used more water, produced more biomass and grain yield under WD compared to TAM 111. Leaf-level data at the grain filling stage indicated that TAM 112 had elevated abscisic acid (ABA) content and reduced stomatal conductance and photosynthesis as compared to TAM 111. Sustained WD during the grain filling stage also resulted in greater flag leaf transcriptome changes in TAM 112 than TAM 111. Transcripts associated with photosynthesis, carbohydrate metabolism, phytohormone metabolism, and other dehydration responses were uniquely regulated between cultivars. These results suggested a differential role for ABA in regulating physiological and transcriptomic changes associated with WD stress and potential involvement in the superior adaptation and yield of TAM 112
    corecore