49 research outputs found

    X chromosome-wide analyses of genomic DNA methylation states and gene expression in male and female neutrophils

    Get PDF
    The DNA methylation status of human X chromosomes from male and female neutrophils was identified by high-throughput sequencing of HpaII and MspI digested fragments. In the intergenic and intragenic regions on the X chromosome, the sites outside CpG islands were heavily hypermethylated to the same degree in both genders. Nearly half of X chromosome promoters were either hypomethylated or hypermethylated in both females and males. Nearly one third of X chromosome promoters were a mixture of hypomethylated and heterogeneously methylated sites in females and were hypomethylated in males. Thus, a large fraction of genes that are silenced on the inactive X chromosome are hypomethylated in their promoter regions. These genes frequently belong to the evolutionarily younger strata of the X chromosome. The promoters that were hypomethylated at more than two sites contained most of the genes that escaped silencing on the inactive X chromosome. The overall levels of expression of X-linked genes were indistinguishable in females and males, regardless of the methylation state of the inactive X chromosome. Thus, in addition to DNA methylation, other factors are involved in the fine tuning of gene dosage compensation in neutrophils

    Molecular liver cancer prevention in cirrhosis by organ transcriptome analysis and lysophosphatidic acid pathway inhibition

    Get PDF
    Cirrhosis is a milieu that develops hepatocellular carcinoma (HCC), the second most lethal cancer worldwide. HCC prediction and prevention in cirrhosis are key unmet medical needs. Here we have established an HCC risk gene signature applicable to all major HCC etiologies: hepatitis B/C, alcohol, and non-alcoholic steatohepatitis. A transcriptome meta-analysis of >500 human cirrhotics revealed global regulatory gene modules driving HCC risk and the lysophosphatidic acid pathway as a central chemoprevention target. Pharmacological inhibition of the pathway in vivo reduced tumors and reversed the gene signature, which was verified in organotypic ex vivo culture of patient-derived fibrotic liver tissues. These results demonstrate the utility of clinical organ transcriptome to enable a strategy, namely, reverse-engineering precision cancer prevention

    A Large Gene Network in Immature Erythroid Cells Is Controlled by the Myeloid and B Cell Transcriptional Regulator PU.1

    Get PDF
    PU.1 is a hematopoietic transcription factor that is required for the development of myeloid and B cells. PU.1 is also expressed in erythroid progenitors, where it blocks erythroid differentiation by binding to and inhibiting the main erythroid promoting factor, GATA-1. However, other mechanisms by which PU.1 affects the fate of erythroid progenitors have not been thoroughly explored. Here, we used ChIP-Seq analysis for PU.1 and gene expression profiling in erythroid cells to show that PU.1 regulates an extensive network of genes that constitute major pathways for controlling growth and survival of immature erythroid cells. By analyzing fetal liver erythroid progenitors from mice with low PU.1 expression, we also show that the earliest erythroid committed cells are dramatically reduced in vivo. Furthermore, we find that PU.1 also regulates many of the same genes and pathways in other blood cells, leading us to propose that PU.1 is a multifaceted factor with overlapping, as well as distinct, functions in several hematopoietic lineages

    Effect of aliskiren on post-discharge outcomes among diabetic and non-diabetic patients hospitalized for heart failure: insights from the ASTRONAUT trial

    Get PDF
    Aims The objective of the Aliskiren Trial on Acute Heart Failure Outcomes (ASTRONAUT) was to determine whether aliskiren, a direct renin inhibitor, would improve post-discharge outcomes in patients with hospitalization for heart failure (HHF) with reduced ejection fraction. Pre-specified subgroup analyses suggested potential heterogeneity in post-discharge outcomes with aliskiren in patients with and without baseline diabetes mellitus (DM). Methods and results ASTRONAUT included 953 patients without DM (aliskiren 489; placebo 464) and 662 patients with DM (aliskiren 319; placebo 343) (as reported by study investigators). Study endpoints included the first occurrence of cardiovascular death or HHF within 6 and 12 months, all-cause death within 6 and 12 months, and change from baseline in N-terminal pro-B-type natriuretic peptide (NT-proBNP) at 1, 6, and 12 months. Data regarding risk of hyperkalaemia, renal impairment, and hypotension, and changes in additional serum biomarkers were collected. The effect of aliskiren on cardiovascular death or HHF within 6 months (primary endpoint) did not significantly differ by baseline DM status (P = 0.08 for interaction), but reached statistical significance at 12 months (non-DM: HR: 0.80, 95% CI: 0.64-0.99; DM: HR: 1.16, 95% CI: 0.91-1.47; P = 0.03 for interaction). Risk of 12-month all-cause death with aliskiren significantly differed by the presence of baseline DM (non-DM: HR: 0.69, 95% CI: 0.50-0.94; DM: HR: 1.64, 95% CI: 1.15-2.33; P < 0.01 for interaction). Among non-diabetics, aliskiren significantly reduced NT-proBNP through 6 months and plasma troponin I and aldosterone through 12 months, as compared to placebo. Among diabetic patients, aliskiren reduced plasma troponin I and aldosterone relative to placebo through 1 month only. There was a trend towards differing risk of post-baseline potassium ≥6 mmol/L with aliskiren by underlying DM status (non-DM: HR: 1.17, 95% CI: 0.71-1.93; DM: HR: 2.39, 95% CI: 1.30-4.42; P = 0.07 for interaction). Conclusion This pre-specified subgroup analysis from the ASTRONAUT trial generates the hypothesis that the addition of aliskiren to standard HHF therapy in non-diabetic patients is generally well-tolerated and improves post-discharge outcomes and biomarker profiles. In contrast, diabetic patients receiving aliskiren appear to have worse post-discharge outcomes. Future prospective investigations are needed to confirm potential benefits of renin inhibition in a large cohort of HHF patients without D

    A pathway for biodegradation of 1-naphthoic acid by Pseudomonas maltophilia CSV89

    No full text
    Pseudomonas maltophilia CSV89, a bacterium isolated from soil in our laboratory, grows on 1-naphthoic acid as the sole source of carbon and energy. To elucidate the pathway for degradation of 1-naphthoic acid, the metabolites were isolated from spent medium, purified by TLC, and characterized by gas chromatography-mass spectrometry. The involvement of various metabolites as intermediates in the pathway was established by demonstrating relevant enzyme activities in cell-free extracts, oxygen uptake and transformation of metabolites by the whole cells. The results obtained from such studies suggest that the degradation of 1-naphthoic acid is initiated by double hydroxylation of the aromatic ring adjacent to the one bearing the carboxyl group, resulting in the formation of 1,2-dihydroxy-8-carboxynaphthalene. The resultant diol was oxidized via 3-formyl salicylate, 2-hydroxyisophthalate, salicylate and catechol to TCA cycle intermediates

    Hidden conditional random fields for phone classification

    No full text
    In this paper, we show the novel application of hidden conditional random fields (HCRFs) – conditional random fields with hidden state sequences – for modeling speech. Hidden state sequences are critical for modeling the non-stationarity of speech signals. We show that HCRFs can easily be trained using the simple direct optimization technique of stochastic gradient descent. We present the results on the TIMIT phone classification task and show that HCRFs outperforms comparable ML and CML/MMI trained HMMs. In fact, HCRF results on this task are the best single classifier results known to us. We note that the HCRF framework is easily extensible to recognition since it is a state and label sequence modeling technique. We also note that HCRFs have the ability to handle complex features without any change in training procedure. 1
    corecore