385 research outputs found

    Measuring Sulfur Isotope Ratios from Solid Samples with the Sample Analysis at Mars Instrument and the Effects of Dead Time Corrections

    Get PDF
    The Sample Analysis at Mars (SAM) instrument suite comprises the largest science payload on the Mars Science Laboratory (MSL) "Curiosity" rover. SAM will perform chemical and isotopic analysis of volatile compounds from atmospheric and solid samples to address questions pertaining to habitability and geochemical processes on Mars. Sulfur is a key element of interest in this regard, as sulfur compounds have been detected on the Martian surface by both in situ and remote sensing techniques. Their chemical and isotopic composition can belp constrain environmental conditions and mechanisms at the time of formation. A previous study examined the capability of the SAM quadrupole mass spectrometer (QMS) to determine sulfur isotope ratios of SO2 gas from a statistical perspective. Here we discuss the development of a method for determining sulfur isotope ratios with the QMS by sampling SO2 generated from heating of solid sulfate samples in SAM's pyrolysis oven. This analysis, which was performed with the SAM breadboard system, also required development of a novel treatment of the QMS dead time to accommodate the characteristics of an aging detector

    Calibration of the Neutral Mass Spectrometer for the Lunar Atmosphere and Dust Environment Explorer

    Get PDF
    Science objectives of the LADEE Mission are to (1) determine the composition, and time variability of the tenuous lunar atmosphere and (2) to characterize the dust environment and its variability. These studies will extend the in-situ characterization of the environment that were carried out decades ago with the Apollo missions and a variety of ground based studies. The focused LADEE measurements will enable a more complete understanding of dust and gas sources and sinks. Sources of gas include UV photo-stimulated desorption, sputtering by plasma and micrometeorites, as well as thermal release of species such as argon from the cold service or venting from the lunar interior. Sinks include recondensation on the surface and escape through a variety of mechanisms. The LADEE science payload consists of an Ultraviolet Spectrometer, a Neutral Mass Spectrometer, and a Dust Detector. The LADEE orbit will include multiple passes at or below 50 km altitude and will target repeated sampling at the sunrise terminator where exospheric density will be highest for some thermally released species. The science mission will be implemented in approximately three months to allow measurements to be made over a period of one or more lunations In addition to the science mission NASA will use this mission to demonstrate optical communication technology away from low Earth orbit

    Fisk-Gloeckler Suprathermal Proton Spectrum in the Heliosheath and the Local Interstellar Medium

    Get PDF
    Convergence of suprathermal keV-MeV proton and ion spectra approximately to the Fisk-Gloeckler (F-G) form j(E) = j(sub 0) E(sup -1.5) in Voyager land 2 heliosheath measurements is suggestive of distributed acceleration in Kolmogorov turbulence which may extend well beyond the heliopause into the local interstellar medium (LISM). Turbulence of this type is already indicated by interstellar radio scintillation measurements of electron density power spectra. Previously published extrapolations (Cooper et al., 2003, 2006) of the LISM proton spectrum from eV to GeV energies are highly consistent with the F-G power-law and further indicative of such turbulence and LISM effectiveness of the F-G cascade acceleration process. The LISM pressure computed from this spectrum well exceeds that from current estimates for the LISM magnetic field, so exchange of energy between the protons and the magnetic field would likely have a strong role in evolution of the turbulence as per the F-G theory and as long ago proposed for cosmic ray energies by Parker and others. Pressure-dependent estimates of the LISM field strength should not ignore this potentially strong and even dominant contribution from the plasma. Presence of high-beta suprathermal plasma on LISM field lines could significantly affect interactions with the heliospheric outer boundary region and might potentially account for distributed and more discrete features in ongoing measurements of energetic neutral emission from the Interstellar Boundary Explorer (IBEX) mission

    In Situ Geochronology on Mars and the Development of Future Instrumentation

    Get PDF
    We review the in situ geochronology experiments conducted by the Mars Science Laboratory mission's Curiosity rover to understand when the Gale Crater rocks formed, underwent alteration, and became exposed to cosmogenic radiation. These experiments determined that the detrital minerals in the sedimentary rocks of Gale are ∼4 Ga, consistent with their origin in the basalts surrounding the crater. The sedimentary rocks underwent fluid-moderated alteration 2 Gyr later, which may mark the closure of aqueous activity at Gale Crater. Over the past several million years, wind-driven processes have dominated, denuding the surfaces by scarp retreat. The Curiosity measurements validate radiometric dating techniques on Mars and guide the way for future instrumentation to make more precise measurements that will further our understanding of the geological and astrobiological history of the planet

    Plasma IMS Composition Measurements for Europa and Ganymede

    Get PDF
    NASA and ESA are planning the joint Europa Jupiter System Mission (EJSM) to the Jupiter system with specific emphasis to Europa and Ganymede, respectively. The Japanese Space Agency is also planning an orbiter mission to explore Jupiter's magnetosphere and the Galilean satellites. For NASA's Jupiter Europa Orbiter (JEO) we are developing the 3D Ion Mass Spectrometer (IMS) with two main goals which can also be applied to the other Galilean moons, 1) measure the plasma interaction between Europa and Jupiter's magnetosphere and 2) infer the 4n surface composition to trace elemental [1] and significant isotopic levels. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa's sub-surface ocean, while the second gives information about transfer of material between the Galilean moons, and between the moon surfaces and subsurface layers putatively including oceans. The measurement of the interactions for all the Galilean moons can be used to trace the in situ ion measurements of pickup ions back to either Europa's or Ganymede's surface from the respectively orbiting spacecraft. The IMS instrument, being developed under NASA's Astrobiology Instrument Development Program, would maximally achieve plasma measurement requirements for JEO and EJSM while moving forward our knowledge of Jupiter system composition and source processes to far higher levels than previously envisaged

    Evolved Gas Analysis of Mars Analog Samples from the Arctic Mars Analog Svalbard Expedition: Implications for Analyses by the Mars Science Laboratory

    Get PDF
    The 2011 Arctic Mars Analog Svalbard Expedition (AMASE) investigated several geologic settings on Svalbard, using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL). The Sample Analysis at Mars (SAM) instrument suite on MSL consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser spectrometer (TLS), which analyze gases created by pyrolysis of samples. During AMASE, a Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-MS) system represented the EGA-QMS capability of SAM. Another MSL instrument, CheMin, will use x-ray diffraction (XRD) and x-ray fluorescence (XRF) to perform quantitative mineralogical characterization of samples. Field-portable versions of CheMin were used during AMASE. AMASE 2011 sites spanned a range of environments relevant to understanding martian surface materials, processes and habitability. They included the basaltic Sverrefjell volcano, which hosts carbonate globules, cements and coatings, carbonate and sulfate units at Colletth0gda, Devonian sandstone redbeds in Bockfjorden, altered basaltic lava delta deposits at Mt. Scott Keltie, and altered dolerites and volcanics at Botniahalvoya. Here we focus on SAM-like EGA-MS of a subset of the samples, with mineralogy comparisons to CheMin team results. The results allow insight into sample organic content as well as some constraints on sample mineralogy

    delta C-13 Analysis of Mars Analog Carbonates Using Evolved Gas Cavity - Ringdown Spectrometry on the 2010 Arctic Mars Analog Svalbard Expedition (AMASE)

    Get PDF
    The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on Svalbard, using instrumentation and techniques in development for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return (MSR). The Sample Analysis at Mars (SAM) instrument suite, which will fly on MSL, was developed at Goddard Space Flight Center (GSFC), together with several partners. SAM consists of a quadrupole mass spectrometer (QMS), a gas chromatograph CGC), and a tunable laser spectrometer (TLS), which all analyze gases created by evolved gas analysis (EGA). The two sites studied represent "biotic" and "abiotic" analogs; the "biotic" site being the Knorringfjell fossil methane seep, and the "abiotic" site being the basaltic Sigurdfjell vent complex. The data presented here represent experiments to measure the carbon isotopic composition of carbonates from these two analogs using evolved gas analysis coupled with a commercial cavity ringdown CO2 isotopic analyzer (Picarro) as a proxy for the TLS on SAM
    • …
    corecore