617 research outputs found

    Examining Reverse Total Shoulder Arthroplasty Baseplate Fixation in Patients with E2-type Glenoid Erosion

    Get PDF
    Superior glenoid erosion of the shoulder joint is a result of humeral subluxation caused by rotator cuff tears, and can be addressed using implants, specifically reverse total shoulder arthroplasty. This thesis examined the regional variations of bone present in superiorly eroded glenoids, established a baseline for regular RTSA baseplate fixation in patients with this defect, and compared the effect of geometric baseplate differences on implant fixation. The superiorly eroded glenoids demonstrated similar regional bone density variations as normal glenoids, and the superior and inferior regions of the glenoid demonstrated the densest and least dense cancellous bone, respectively. These regions also resulted in the most and least amounts of micromotion, respectively. The full-wedge and half-wedge baseplates resulted in more tangential micromotion, while the 6mm lateralized baseplate performed the worst overall. While the standard baseplate resulted in the best fixation outcomes, surgical limitations need to be accounted for when selecting the type of implant to be used

    Kinetics of the Formation and Dissociation of Actin Filament Branches Mediated by Arp2/3 Complex

    Get PDF
    AbstractThe actin filament network at the leading edge of motile cells relies on localized branching by Arp2/3 complex from “mother” filaments growing near the plasma membrane. The nucleotide bound to the mother filaments (ATP, ADP and phosphate, or ADP) may influence the branch dynamics. To determine the effect of the nucleotide bound to the subunits of the mother filament on the formation and stability of branches, we compared the time courses of actin polymerization in bulk samples measured using the fluorescence of pyrene actin with observations of single filaments by total internal reflection fluorescence microscopy. Although the branch nucleation rate in bulk samples was nearly the same regardless of the nucleotide on the mother filaments, we observed fewer branches by microscopy on ADP-bound filaments than on ADP-Pi-bound filaments. Observation of branches in the microscope depends on their binding to the slide. Since the probability that a branch binds to the slide is directly related to its lifetime, we used counts of branches to infer their rates of dissociation from mother filaments. We conclude that the nucleotide on the mother filament does not affect the initial branching event but that branches are an order of magnitude more stable on the sides of new ATP- or ADP-Pi filaments than on ADP-actin filaments

    Weaving together climate science and chemistry education in an African context

    Get PDF
    Integrating meaningful contexts into chemistry education offers potential benefits for both students and instructors. Weaving together the teaching and learning of chemistry with the rich context of climate science provides opportunities for educators to increase student motivation, enhance classroom experiences and equip students to use fundamental understanding of science and problem-solving skills to begin to address some of our planet’s most important and complex challenges. Improved climate literacy is especially important to African students and teachers because of Africa’s vulnerability to climate change. This paper describes the development of a new set of interactive, web-based resources, Visualizing and Understanding the Science of Climate Change (www.explainingclimatechange.com), which explores various climate topics and illustrates ways in which connections between chemistry and climate change can be drawn out in chemistry courses at the secondary and post-secondary level. Dual goals are to improve chemistry conceptual understanding and to empower African students to understand and effectively respond to the climate challenges currently facing their continent. [AJCE, 3(2), June 2013

    Characterization for Spray Droplet Behaviour in Afterburner-like Flow Conditions

    Get PDF
    Fuel injection processes can contribute to combustion instability in highly energetic combustion systems. In gas turbine engine afterburners, jet-in-crossflow (JIX) injection is used. Part one of the thesis study investigates the interaction between spray droplets and turbulent flow properties of a JIX. Jet-in-counterflow (JIC) configuration was also investigated. Part two of the investigation examined the behaviour of JIX droplets around a bluff body. Droplet size and flow turbulence was characterized simultaneously using particle image velocimetry and image processing techniques. Turbulence and droplet size were correlated, particularly at momentum flux ratios ≥ 60. High speed imaging was used to identify droplet breakup mechanisms and size distribution around the bluff body. Overall, the current techniques allow for a reasonable simultaneous investigation of the coupled behaviour between JIX droplets and turbulence, and further development of the technique may have a significant impact on improved understanding of the mechanisms of JIX

    Thermochemolysis: A New Sample Preparation Approach for the Detection of Organic Components of Complex Macromolecules in Mars Rocks via Gas Chromatography Mass Spectrometry in SAM on MSL

    Get PDF
    Organic chemicals, when present in extraterrestrial samples, afford precious insight into past and modern conditions elsewhere in the Solar System . No single technology identifies all molecular components because naturally occurring molecules have different chemistries (e.g., polar vs. non-polar, low to high molecular weight) and interface with the ambient sample chemistry in a variety of modes (i.e., organics may be bonded, absorbed or trapped by minerals, liquids, gases, or other organics). More than 90% of organic matter in most natural samples on Earth and in meteorites is composed of complex macromolecules (e.g. biopolymers, complex biomolecules, humic substances, kerogen) because the processes that tend to break down organic molecules also tend towards complexation of the more recalcitrant components. Thus, methodologies that tap the molecular information contained within macromolecules may be critical to detecting extraterrestrial organic matter and assessing the sources and processes influencing its nature

    The Investigation of Chlorate and Perchlorate/Saponite Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater

    Get PDF
    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected O2 and HCl gas releases from all analyzed Gale Crater sediments, which are attributed to the presence of perchlorates and/or chlorates in martian sediment. Previous SAM analog laboratory analyses found that most pure perchlorates and chlorates release O2 and HCl at different temperatures than those observed in the SAM data. Subsequent studies examined the effects of perchlorate and chlorate mixtures with Gale Crater analog iron phases, which are known to catalyze oxychlorine decomposition. Several mixtures produced O2 releases at similar temperatures as Gale Crater materials, but most of these mixtures did not produce significant HCl releases comparable to those detected by the SAM instrument. In order to better explain the Gale Crater HCl releases, perchlorates and chlorates were mixed with Gale Crater analog saponite, which is found at abundances from 8 to 20 wt % in the John Klein and Cumberland drill samples. Mixtures of chlorates or perchlorates with calcium-saponite or ferrian-saponite were heated to 1000 deg C in a Labsys EVO differential scanning calorimeter/mass spectrometer configured to operate similarly to the SAM oven/quadrupole mass spectrometer system. Our results demonstrate that all chlorate and perchlorate mixtures produce significant HCl releases below 1000 deg C as well as depressed oxygen peak release temperatures when mixed with saponite. The type of saponite (calcium or ferrian saponite) did not affect the evolved gas results significantly. Saponite/Mg-perchlorate mixtures produced two HCl releases similar to the Cumberland drilled sample. Mg-chlorate mixed with saponite produced HCl releases similar to the Big Sky drilled sample in an eolian sandstone. A mixture of Ca-perchlorate and saponite produced HCl and oxygen releases similar to the Buckskin mudstone drilled sample and the Gobabeb 2 eolian dune material. Ca-chlorate mixed with saponite produced both HCl and oxygen releases within the same range as the Rock-nest windblown deposit, the Greenhorn eolian sandstone, and the John Klein drilled mudstone. Overall, mixtures of perchlorates or chlorates with saponite provide the first explanation for the high temperature HCl releases in addition to the oxygen releases observed in Gale Crater materials

    Thermal Decomposition of Calcium Perchlorate/Iron-Mineral Mixtures: Implications of the Evolved Oxygen from the Rocknest Eolian Deposit in Gale Crater, Mars

    Get PDF
    A major oxygen release between 300 and 500 C was detected by the Mars Curiosity Rover Sample Analysis at Mars (SAM) instrument at the Rocknest eolian deposit. Thermal decomposition of perchlorate (ClO4-) salts in the Rocknest samples are a possible explanation for this evolved oxygen release. Releative to Na-, K-, Mg-, and Fe-perchlorate, the thermal decomposition of Ca-perchlorate in laboratory experiments released O2 in the temperature range (400-500degC) closest to the O2 release temperatures observed for the Rocknest material. Furthermore, calcium perchlorate could have been the source of Cl in the chlorinated-hydrocarbons species that were detected by SAM. Different components in the Martian soil could affect the decomposition temperature of calcium per-chlorate or another oxychlorine species. This interaction of the two components in the soil could result in O2 release temperatures consistent with those detected by SAM in the Rocknest materials. The decomposition temperatures of various alkali metal perchlorates are known to decrease in the presence of a catalyst. The objective of this work is to investigate catalytic interactions on calcium perchlorate from various iron-bearing minerals known to be present in the Rocknest materia

    Thermal and Evolved Gas Analysis of Calcite Under Reduced Operating Pressures: Implications for the 2011 MSL Sample Analysis at Mars (SAM) Instrument

    Get PDF
    The Mars Science Laboratory (MSL) is scheduled for launch in 2011. The science objectives for MSL are to assess the past or present biological potential, to characterize the geology, and to investigate other planetary processes that influence habitability at the landing site. The Sample Analysis at Mars (SAM) is a key instrument on the MSL payload that will explore the potential habitability at the landing site [1]. In addition to searching for organic compounds, SAM will have the capability to characterized evolved gases as a function of increasing temperature and provide information on the mineralogy of volatile-bearing phases such as carbonates, sulfates, phyllosilicates, and Fe-oxyhydroxides. The operating conditions in SAM ovens will be maintained at 30 mb pressure with a He carrier gas flowing at 1 sccm. We have previously characterized the thermal and evolved gas behaviors of volatile-bearing species under reduced pressure conditions that simulated operating conditions of the Thermal and Evolved Gas Analyzer (TEGA) that was onboard the 2007 Mars Phoenix Scout Mission [e.g., 2-8]. TEGA ovens operated at 12 mb pressure with a N2 carrier gas flowing at 0.04 sccm. Another key difference between SAM and TEGA is that TEGA was able to perform differential scanning calorimetry whereas SAM only has a pyrolysis oven. The operating conditions for TEGA and SAM have several key parameter differences including operating pressure (12 vs 30 mb), carrier gas (N2 vs. He), and carrier gas flow rate (0.04 vs 1 sccm). The objectives of this study are to characterize the thermal and evolved gas analysis of calcite under SAM operating conditions and then compare it to calcite thermal and evolved gas analysis under TEGA operating conditions

    Search for Chemical Biomarkers on Mars Using the Sample Analysis at Mars Instrument Suite on the Mars Science Laboratory

    Get PDF
    One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments
    corecore