142 research outputs found

    The History of Planetary Exploration Using Mass Spectrometers

    Get PDF
    At the Planetary Probe Workshop Dr. Paul Mahaffy will give a tutorial on the history of planetary exploration using mass spectrometers. He will give an introduction to the problems and solutions that arise in making in situ measurements at planetary targets using this instrument class

    In Situ Strategy of the 2011 Mars Science Laboratory to Investigate the Habitability of Ancient Mars

    Get PDF
    The ten science investigations of the 2011 Mars Science Laboratory (MSL) Rover named "Curiosity" seek to provide a quantitative assessment of habitability through chemical and geological measurements from a highly capable robotic' platform. This mission seeks to understand if the conditions for life on ancient Mars are preserved in the near-surface geochemical record. These substantial payload resources enabled by MSL's new entry descent and landing (EDL) system have allowed the inclusion of instrument types nevv to the Mars surface including those that can accept delivered sample from rocks and soils and perform a wide range of chemical, isotopic, and mineralogical analyses. The Chemistry and Mineralogy (CheMin) experiment that is located in the interior of the rover is a powder x-ray Diffraction (XRD) and X-ray Fluorescence (XRF) instrument that provides elemental and mineralogical information. The Sample Analysis at Mars (SAM) suite of instruments complements this experiment by analyzing the volatile component of identically processed samples and by analyzing atmospheric composition. Other MSL payload tools such as the Mast Camera (Mastcam) and the Chemistry & Camera (ChemCam) instruments are utilized to identify targets for interrogation first by the arm tools and subsequent ingestion into SAM and CheMin using the Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem. The arm tools include the Mars Hand Lens Imager (MAHLI) and the Chemistry and Alpha Particle X-ray Spectrometer (APXX). The Dynamic Albedo of Neutrons (DAN) instrument provides subsurface identification of hydrogen such as that contained in hydrated mineral

    Calibration and Sequence Development Status for the Sample Analysis at Mars Investigation on the Mars Science Laboratory

    Get PDF
    The measurement goals of the Sample Analysis at Mars (SAM) instrument suite on the "Curiosity" Rover of the Mars Science Laboratory (MSL) include chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples [1,2]. SAM directly supports the ambitious goals of the MSL mission to provide a quantitative assessment of habitability and preservation in Gale crater by means of a range of chemical and geological measurements [3]. The SAM FM combined calibration and environmental testing took place primarily in 2010 with a limited set of tests implemented after integration into the rover in January 2011. The scope of SAM FM testing was limited both to preserve SAM consumables such as life time of its electromechanical elements and to minimize the level of terrestrial contamination in the SAM instrument. A more comprehensive calibration of a SAM-like suite of instruments will be implemented in 2012 with calibration runs planned for the SAM testbed. The SAM Testbed is nearly identical to the SAM FM and operates in a ambient pressure chamber. The SAM Instrument Suite: SAM's instruments are a Quadrupole Mass Spectrometer (QMS), a 6-column Gas Chromatograph (GC), and a 2-channel Tunable Laser Spectrometer (TLS). Gas Chromatography Mass Spectrometry is designed for identification of even trace organic compounds. The TLS [5] secures the C, H, and O isotopic composition in carbon dioxide, water, and methane. Sieved materials are delivered from the MSL sample acquisition and processing system to one of68 cups of the Sample Manipulation System (SMS). 59 of these cups are fabricated from inert quartz. After sample delivery, a cup is inserted into one of 2 ovens for evolved gas analysis (EGA ambient to >9500C) by the QMS and TLS. A portion of the gas released can be trapped and subsequently analyzed by GCMS. Nine sealed cups contain liquid solvents and chemical derivatization or thermochemolysis agents to extract and transform polar molecules such as amino acids, nucleobases, and carboxylic acids into compounds that are sufficiently volatile to transmit through the GC columns. The remaining 6 cups contain calibrants. SAM FM Calibration Overview: The SAM FM calibration in the Mars chamber employed a variety of pure gases, gas mixtures, and solid materials. Isotope calibration runs for the TLS utilized 13C enriched C02 standards and 0 enriched CH4. A variety of fluorocarbon compounds that spanned the entire mass range of the QMS as well as C3-C6 hydrocarbons were utilized for calibration of the GCMS. Solid samples consisting of a mixture of calcite, melanterite, and inert silica glass either doped or not with fluorocarbons were introduced into the SAM FM cups through the SAM inlet funnel/tube system

    High-altitude gravity waves in the Martian thermosphere observed by MAVEN/NGIMS and modeled by a gravity wave scheme

    Full text link
    First high-altitude observations of gravity wave (GW)-induced CO2_2 density perturbations in the Martian thermosphere retrieved from NASA's NGIMS instrument on board the MAVEN satellite are presented and interpreted using the extended GW parameterization of Yi\u{g}it et al. [2008] and the Mars Climate Database as an input. Observed relative density perturbations between 180-220 km of 20-40 % demonstrate appreciable local time, latitude, and altitude variations. Modeling for the spatiotemporal conditions of the MAVEN observations suggests that GWs can directly propagate from the lower atmosphere to the thermosphere, produce appreciable dynamical effects, and likely contribute to the observed fluctuations. Modeled effects are somewhat smaller than the observed but their highly variable nature is in qualitative agreement with observations. Possible reasons for discrepancies between modeling and measurements are discussed.Comment: Accepted for publication in Geophysical Research Letters (GRL). Special section: First Results from the MAVEN Mission to Mar

    Neutral Mass Spectrometer (NMS) for the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission

    Get PDF
    The Lunar Atmosphere and Dust Environment Explorer (LADEE) mission currently scheduled for launch in early 2013 aboard a Minotaur V will orbit the moon at a nominal periselene of 50 km to characterized the lunar atmosphere and dust environment. The science instrument payload includes a neutral mass spectrometer as well as an ultraviolet spectrometer and a dust detector. Although to date only He, Ar-40, K, Na and Rn-222 have been firmly identified in the lunar exosphere and arise from the solar wind (He), the lunar regolith (K and Na) and the lunar interior (Ar-40, Rn-222), upper limits have been set for a large number of other species, LADEE Neutral Mass Spectrometer (NMS) observations will determine the abundance of several species and substantially lower the present upper limits for many others. Additionally, LADEE NMS will observe the spatial distribution and temporal variability of species which condense at nighttime and show peak concentrations at the dawn terminator (e,g, Ar-40), possible episodic release from the lunar interior, and the results of sputtering or desorption processes from the regolith. In this presentation, we describe the LADEE NMS hardware and the anticipated science results

    Perchlorate formation on Mars through surface radiolysis‐initiated atmospheric chemistry: A potential mechanism

    Full text link
    Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4–). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one‐dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2 × 107 molecules cm–2 s–1 sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.Key PointsMechanism initiated by radiolysis in the surface can potentially account for observed Martian perchlorate concentrationsInjection of oxides of chlorine from the surface into the atmosphere is potentially an effective way of forming perchloric acidMartian perchlorate is an important oxidant but poorly characterizedPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134196/1/jgre20553.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134196/2/jgre20553_am.pd

    Non-Detection of Methane in the Mars Atmosphere by the Curiosity Rover

    Get PDF
    By analogy with Earth, methane in the atmosphere of Mars is a potential signature of ongoing or past biological activity on the planet. During the last decade, Earth-based telescopic and Mars orbit remote sensing instruments have reported significant abundances of methane in the Martian atmosphere ranging from several to tens of parts-per-billion by volume (ppbv). Observations from Earth showed plumes of methane with variations on timescales much faster than expected and inconsistent with localized patches seen from orbit, prompting speculation of sources from sub-surface methanogen bacteria, geological water-rock reactions or infall from comets, micro-meteorites or interplanetary dust. From measurements on NASAs Curiosity Rover that landed near Gale Crater on 5th August 2012, we here report no definitive detection of methane in the near-surface Martian atmosphere. Our in situ measurements were made using the Tunable Laser Spectrometer (TLS) in the Sample Analysis at Mars (SAM) instrument suite6 that made three separate searches on Martian sols 79, 81 and 106 after landing. The measured mean value of 0.39 plus or minus 1.4 ppbv corresponds to an upper limit for methane abundance of 2.7 ppbv at the 95 confidence level. This result is in disagreement with both the remote sensing spacecraft observations taken at lower sensitivity and the telescopic observations that relied on subtraction of a very large contribution from terrestrial methane in the intervening observation path. Since the expected lifetime of methane in the Martian atmosphere is hundreds of years, our results question earlier observations and set a low upper limit on the present day abundance, reducing the probability of significant current methanogenic microbial activity on Mars

    Micro-ion Traps for Detection of (Pre)-Biotic Organic Compounds on Comets

    Get PDF
    Comets are currently believed to be a mixture of interstellar and nebular material. Many of the volatiles in comets are attributed to interstellar chemistry, because the same species of carbonaceous compounds are also observed in ices in interstellar molecular (ISM) clouds. Comets are thus likely to be a relatively pristine reservoir of primitive material and carbonaceous compounds in our solar system. They could be a major contributor to the delivery of prebiotic organic compounds, from which life emerged through impacts on early Earth. Mass spectrometers are very powerful tools to identify unknown chemicals, and much progress bas been made in miniaturizing mas spectrometers for space applications. Most miniatu rized mass spectrometers developed to date, however, are still relatively large, power hungry, complicated to assemble, and would have significant impact on space flight vehicle total payload and resource allocations

    In Situ Geochronology on Mars and the Development of Future Instrumentation

    Get PDF
    We review the in situ geochronology experiments conducted by the Mars Science Laboratory mission's Curiosity rover to understand when the Gale Crater rocks formed, underwent alteration, and became exposed to cosmogenic radiation. These experiments determined that the detrital minerals in the sedimentary rocks of Gale are ∼4 Ga, consistent with their origin in the basalts surrounding the crater. The sedimentary rocks underwent fluid-moderated alteration 2 Gyr later, which may mark the closure of aqueous activity at Gale Crater. Over the past several million years, wind-driven processes have dominated, denuding the surfaces by scarp retreat. The Curiosity measurements validate radiometric dating techniques on Mars and guide the way for future instrumentation to make more precise measurements that will further our understanding of the geological and astrobiological history of the planet

    Early Results from the Lunar Atmosphere and Dust Environment Explorer (LADEE)

    Get PDF
    On 6 September, 2013, a near-perfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into a high-eccentricity geocentric orbit. After 30 days of phasing, LADEE arrived at the Moon on 6 October, 2013. LADEE's science objectives are twofold: (1) Determine the composition of the lunar atmosphere, investigate processes controlling its distribution and variability, including sources, sinks, and surface interactions; (2) Characterize the lunar exospheric dust environment, measure its spatial and temporal variability, and effects on the lunar atmosphere, if any. After a successful commissioning phase, the three science instruments have made systematic observations of the lunar dust and exospheric environment. These include initial observations of argon, neon and helium exospheres, and their diurnal variations; the lunar micrometeoroid impact ejecta cloud and its variations; spatial and temporal variations of the sodium exosphere; and the search for sunlight extinction caused by dust. LADEE also made observations of the effects of the Chang'e 3 landing on 14 December 2013
    corecore