11 research outputs found

    Innovations in air sampling to detect plant pathogens

    Get PDF
    Many innovations in the development and use of air sampling devices have occurred in plant pathology since the first description of the Hirst spore trap. These include improvements in capture efficiency at relatively high air-volume collection rates, methods to enhance the ease of sample processing with downstream diagnostic methods and even full automation of sampling, diagnosis and wireless reporting of results. Other innovations have been to mount air samplers on mobile platforms such as UAVs and ground vehicles to allow sampling at different altitudes and locations in a short space of time to identify potential sources and population structure. Geographical Information Systems and the application to a network of samplers can allow a greater prediction of airborne inoculum and dispersal dynamics. This field of technology is now developing quickly as novel diagnostic methods allow increasingly rapid and accurate quantifications of airborne species and genetic traits. Sampling and interpretation of results, particularly action-thresholds, is improved by understanding components of air dispersal and dilution processes and can add greater precision in the application of crop protection products as part of integrated pest and disease management decisions. The applications of air samplers are likely to increase, with much greater adoption by growers or industry support workers to aid in crop protection decisions. The same devices are likely to improve information available for detection of allergens causing hay fever and asthma or provide valuable metadata for regional plant disease dynamics

    Rhizosphere bacterial communities of potato cultivars evaluated through PCR-DGGE profiles Comunidades bacterianas associadas à rizosfera de cultivares de batata avaliadas por perfis de PCR-DGGE

    Get PDF
    The objective of this work was to determine the shifts on the PCR-DGGE profiles of bacterial communities associated to the rhizosphere of potato cultivars, in order to generate baseline information for further studies of environmental risk assessment of genetically modified potato plants. A greenhouse experiment was carried out with five potato cultivars (Achat, Bintje, Agata, Monalisa and Asterix), cultivated in pots containing soil from an integrated system for agroecological production. The experiment was conducted in a split plot randomized block design with five cultivars, three sampling periods and five replicates. Rhizosphere samples were collected in three sampling dates during plant development. DNA of rhizosphere microorganisms was extracted, amplified by PCR using bacterial universal primers, and analyzed through DGGE. Shifts on the rhizosphere bacterial communities associated to rhizosphere of different cultivars were related to both cultivar and plant age. Differences among rhizosphere bacterial communities were clearest at the earliest plant age, tending to decrease in later stages. This variation was detected among bacterial communities of the five tested cultivars. The characterization of soil microbial communities can be part of plant breeding programs to be used on studies of environmental risk assessment of genetically modified potatoes.<br>O objetivo deste trabalho foi determinar as alterações nos perfis de PCR-DGGE das comunidades bacterianas associadas à rizosfera de cultivares de batata, para obter informações para futuros estudos de avaliação de risco ambiental de plantas de batatas geneticamente modificadas. Foi conduzido experimento em casa de vegetação com cinco cultivares de batata (Achat, Bintje, Ágata, Monalisa e Asterix), cultivadas em vasos com solo de um sistema integrado de produção agroecológica. O delineamento experimental foi o de blocos ao acaso, em parcelas subdivididas, com cinco cultivares, três períodos amostrais e cinco repetições. As amostras de rizosfera foram coletadas em três diferentes épocas durante o desenvolvimento das plantas. O DNA dos microrganismos associados à rizosfera foi extraído, amplificado por PCR com uso de iniciadores universais para bactérias e analisados por DGGE. Foram observadas alterações, relacionadas à cultivar e à idade da planta, nos perfis das comunidades bacterianas associadas à rizosfera das diferentes cultivares. As diferenças entre as comunidades bacterianas foram maiores na fase inicial do crescimento das plantas, com tendência a diminuir no estágio final de desenvolvimento. Essa variação foi detectada na comunidade bacteriana das cinco cultivares estudadas. A caracterização da microbiota do solo pode ser parte de programas de melhoramento de plantas a ser utilizada em estudos de avaliação de risco ambiental de batatas geneticamente modificadas
    corecore