3,600 research outputs found

    Dynamics of poroelastic filaments

    Full text link
    We investigate the stability and geometrically non-linear dynamics of slender rods made of a linear isotropic poroelastic material. Dimensional reduction leads to the evolution equation for the shape of the poroelastica where, in addition to the usual terms for the bending of an elastic rod, we find a term that arises from fluid-solid interaction. Using the poroelastica equation as a starting point, we consider the load controlled and displacement controlled planar buckling of a slender rod, as well as the closely related instabilities of a rod subject to twisting moments and compression when embedded in an elastic medium. This work has applications to the active and passive mechanics of thin filaments and sheets made from gels, plant organs such as stems, roots and leaves, sponges, cartilage layers and bones.Comment: 34 pages, 13 figures, to appear in the Proceeding of the Royal Societ

    Exactly isochoric deformations of soft solids

    Full text link
    Many materials of contemporary interest, such as gels, biological tissues and elastomers, are easily deformed but essentially incompressible. Traditional linear theory of elasticity implements incompressibility only to first order and thus permits some volume changes, which become problematically large even at very small strains. Using a mixed coordinate transformation originally due to Gauss, we enforce the constraint of isochoric deformations exactly to develop a linear theory with perfect volume conservation that remains valid until strains become geometrically large. We demonstrate the utility of this approach by calculating the response of an infinite soft isochoric solid to a point force that leads to a nonlinear generalization of the Kelvin solution. Our approach naturally generalizes to a range of problems involving deformations of soft solids and interfaces in 2 dimensional and axisymmetric geometries, which we exemplify by determining the solution to a distributed load that mimics muscular contraction within the bulk of a soft solid

    Origin of transition metal clustering tendencies in GaAs based dilute magnetic semiconductors

    Full text link
    While isovalent doping of GaAs (e.g. by In) leads to a repulsion between the solute atoms, two Cr, Mn, or Fe atoms in GaAs are found to have lower energy than the well-separated pair, and hence attract each other. The strong bonding interaction between levels with t2 symmetry on the transition metal (TM) atoms results in these atoms exhibiting a strong tendency to cluster. Using first-principles calculations, we show that this attraction is maximal for Cr, Mn and Fe while it is minimal for V. The difference is attributed to the symmetry of the highest occupied levels. While the intention is to find possible choices of spintronic materials that show a reduced tendency to cluster, one finds that the conditions that minimize clustering tendencies also minimize the stabilization of the magnetic state.Comment: To appear in Appl. Phys. Let

    Evaluation of the effects of space environment exposure on index of refraction and extinction coefficients of Apollo window materials

    Get PDF
    Temperature and radiation effects on index of refraction and extinction coefficients of Apollo window material

    Electronic Structure of Sr_2FeMoO_6

    Full text link
    We have analysed the unusual electronic structure of Sr_2FeMoO_6 combining ab-initio and model Hamiltonian approaches. Our results indicate that there are strong enhancements of the intraatomic exchange strength at the Mo site as well as the antiferromagnetic coupling strength between Fe and Mo sites. We discuss the possibility of a negative effective Coulomb correlation strength (U_{eff}) at the Mo site due to these renormalised interaction strengths.Comment: To appear in Phys. Rev. Let

    Thermal Bremsstrahlung Radiation in a Two-Temperature Plasma

    Full text link
    In the normal one-temperature plasma the motion of ions is usually neglected when calculating the Bremsstrahlung radiation of the plasma. Here we calculate the Bremsstrahlung radiation of a two-temperature plasma by taking into account of the motion of ions. Our results show that the total radiation power is always lower if the motion of ions is considered. We also apply the two-temperature Bremsstrahlung radiation mechanism for an analytical Advection-Dominated Accretion Flow (ADAF) model; we find the two-temperature correction to the total Bremsstrahlung radiation for ADAF is negligible.Comment: 5 pages, 4 figures, accepted for publication in CHJAA. Some discussions and references adde

    Peeling from a patterned thin elastic film

    Full text link
    Inspired by the observation that many naturally occurring adhesives arise as textured thin films, we consider the displacement controlled peeling of a flexible plate from an incision-patterned thin adhesive elastic layer. We find that crack initiation from an incision on the film occurs at a load much higher than that required to propagate it on a smooth adhesive surface; multiple incisions thus cause the crack to propagate intermittently. Microscopically, this mode of crack initiation and propagation in geometrically confined thin adhesive films is related to the nucleation of cavitation bubbles behind the incision which must grow and coalesce before a viable crack propagates. Our theoretical analysis allows us to rationalize these experimental observations qualitatively and quantitatively and suggests a simple design criterion for increasing the interfacial fracture toughness of adhesive films.Comment: 8 pages, To appear in Proceedings of Royal Society London, Ser.

    A Toy Model of Flying Snake's Glide

    Full text link
    We have developed a toy model of flying snake's glide [J.J. Socha, Nature vol. 418 (2002) 603.] by modifying a model for a falling paper. We have found that asymmetric oscillation is a key about why snake can glide. Further investigation for snake's glide will provide us details about how it can glide without a wing.Comment: 6 pages, to be submitted to J. Phys. Soc. Jpn. Revised Version submitted to the abov
    corecore