7 research outputs found

    Decreased defluorination using the novel beta-cell imaging agent [18F]FE-DTBZ-d4 in pigs examined by PET

    Get PDF
    The aim of the thesis was twofold. The first aim was to radiolabel small molecules by using carbon-11 and fluorine-18 for visualising beta cell mass (BCM) in the pancreas by PET. Diabetes Mellitus (DM) is a chronic metabolic disorder that results from an absolute or relative lack of BCM of endocrine pancreas. The lack of an adequate non-invasive imaging PET probe prevents detailed examination of beta cell loss during onset and progression of DM as well as development of novel treatments and islets transplantation progress. The second aim of the thesis was to radiolabel peptide molecules with fluorine-18 to visualise beta amyloid in Alzheimer’s disease (AD) brain. AD is a chronic, progressive neurodegenerative disorder. Brain penetration study of a labelled peptide, specific for beta amyloid that can cross blood-brain-barrier (BBB), is important to gain knowledge about the fate of the molecule as a diagnostic probe. A series of three novel radioligands for BCM imaging has been developed in this thesis. In paper I, a vesicular monoamine transporter type 2 (VMAT2) specific radioligand [18F]FE-DTBZ-d4 was synthesised in two steps. First step is the nucleophilic [18F]fluorination to produce deuterated-[18F]fluoroethylbromide followed by the O- alkylation of desmethyl-DTBZ precursor to produce [18F]FE-DTBZ-d4. The in vivo pharmacokinetics (PK) studies in pigs by PET/CT demonstrated reduced in vivo defluorination; therefore, it may be an improved potential candidate for imaging VMAT2 dense tissue i.e. islets transplantation in proximity to cortical bone structure. In Paper II, a glucokinase (GK) specific radioligand, [11C]AZ12504948, was synthesised in one step via alkylation of O-desmethyl precursor using [11C]methyl iodide. Both in vitro and in vivo (pig and monkey) studies with [11C]AZ12504948 for imaging GK in the pancreas and liver indicated low specificity. Increased target specificity is required for further progress in GK imaging using PET radioligands. In Paper III, a radioligand for G-protein coupled receptor 44 (GPR44), [11C/3H]AZ Compound X, was synthesised via S-methylation of sodium sulfinate salt in one step using [11C/3H]methyl iodide. In vitro binding of the radioligand, evaluated by autoradiography (ARG) on human and rat pancreatic tissues, confirmed higher specific binding in islets of human pancreatic tissue and no measurable binding in rat pancreas, which is devoid of GPR44. These studies indicate that the radioligand has suitable properties for beta cell imaging with high potential for further preclinical and clinical evaluation. Three novel D-peptides were radiolabelled with fluorine-18 ([18F]ACI-87, [18F]ACI- 88, [18F]ACI-89) by using prosthetic group N-succinimidyl-4-[18F]fluorobenzoate, [18F]SFB, with epsilon (ε)-amino groups of lysine residues of peptide precursors in two steps. First step is the synthesis of [18F]SFB followed by the addition of [18F]SFB via acylation to the peptide molecule. Trimethylammonium salt [N(CH3)3+] precursor for synthesising [18F]SFB as well as the reference standard SFB were synthesised with good yields. Three 19F-peptide reference standards were also synthesised by using SFB. Preliminary ARG measurements were performed in AD and control human brains. ARG demonstrated higher radioligand uptake in the AD brain compared to age-matched control brain, which makes them potential for further use in in vivo testing by PET. However, preliminary PET (in vivo) studies in cynomolgus monkey brain, using these 18F-D-peptides, confirmed too low BBB penetration, making them unsuitable for further use as in vivo PET probes

    Synthesis, Biodistribution, and Radiation Dosimetry of a Novel mGluR5 Radioligand : F-18-AZD9272

    No full text
    The metabotropic glutamate receptor subtype mGluR5 has been proposed as a potential drug target for CNS disorders such as anxiety, depression, Parkinson's disease, and epilepsy. The AstraZeneca compound AZD9272 has previously been labeled with carbon-11 and used as a PET radioligand for mGluR5 receptor binding. The molecular structure of AZD9272 allows one to label the molecule with fluorine-18 without altering the structure. The aim of this study was to develop a fluorine-18 analogue of AZD9272 and to examine its binding distribution in the nonhuman primate brain in vivo as well as to obtain whole body radiation dosimetry. F-18-AZD9272 was successfully synthesized from a nitro precursor. The radioligand was stable, with a radiochemical purity of >99% at 2 h after formulation in a sterile phosphate buffered solution (pH = 7.4). After injection of F-18-AZD9272 in two cynomolgus monkeys, the maximum whole brain radioactivity concentration was 4.9-6.7% of the injected dose (n = 2) and PET images showed a pattern of regional radioactivity consistent with that previously obtained for C-11-AZD9272. The percentage of parent radioligand in plasma was 59 and 64% (n = 2) at 120 min after injection of F-18-AZD9272, consistent with high metabolic stability. Two whole body PET scans were performed in nonhuman primates for a total of 231 min after injection of F-18-AZD9272. Highest uptakes were seen in liver and small intestine, followed by brain and kidney. The estimated effective dose was around 0.017 mSv/MBq. F-18-AZD9272 shows suitable properties as a PET radioligand for in vivo imaging of binding in the primate brain. F-18-labeled AZD9272 offers advantages over C-11-AZD9272 in terms of higher image resolution, combined with a longer half-life. Moreover, based on the distribution and the estimated radiation burden, imaging of F-18-AZD9272 could be used as an improved tool for quantitative assessment and characterization of AZD9272 binding sites in the human brain by using PET

    The development of a GPR44 targeting radioligand [11C]AZ12204657 for in vivo assessment of beta cell mass.

    No full text
    BACKGROUND: The G-protein-coupled receptor 44 (GPR44) is a beta cell-restricted target that may serve as a marker for beta cell mass (BCM) given the development of a suitable PET ligand. METHODS: The binding characteristics of the selected candidate, AZ12204657, at human GPR44 were determined using in vitro ligand binding assays. AZ12204657 was radiolabeled using 11C- or 3H-labeled methyl iodide ([11C/3H]CH3I) in one step, and the conversion of [11C/3H]CH3I to the radiolabeled product [11C/3H]AZ12204657 was quantitative. The specificity of radioligand binding to GPR44 and the selectivity for beta cells were evaluated by in vitro binding studies on pancreatic sections from human and non-human primates as well as on homogenates from endocrine and exocrine pancreatic compartments. RESULTS: The radiochemical purity of the resulting radioligand [11C]AZ12204657 was > 98%, with high molar activity (MA), 1351 ± 575 GBq/μmol (n = 18). The radiochemical purity of [3H]AZ12204657 was > 99% with MA of 2 GBq/μmol. Pancreatic binding of [11C/3H]AZ12204657 was co-localized with insulin-positive islets of Langerhans in non-diabetic individuals and individuals with type 2 diabetes (T2D). The binding of [11C]AZ12204657 to GPR44 was > 10 times higher in islet homogenates compared to exocrine homogenates. In human islets of Langerhans GPR44 was co-expressed with insulin, but not glucagon as assessed by co-staining and confocal microscopy. CONCLUSION: We radiolabeled [11C]AZ12204657, a potential PET radioligand for the beta cell-restricted protein GPR44. In vitro evaluation demonstrated that [3H]AZ12204657 and [11C]AZ12204657 selectively target pancreatic beta cells. [11C]AZ12204657 has promising properties as a marker for human BCM
    corecore