15 research outputs found

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Genetic Polymorphisms in the EGFR (R521K) and Estrogen Receptor (T594T) Genes, EGFR and ErbB-2 Protein Expression, and Breast Cancer Risk in Tunisia

    Get PDF
    We evaluated the association of epidermal growth factor receptor (EGFR) 142285G>A (R521K) and estrogen receptor alpha (ESR1) 2014G>A (T594T) single nucleotide polymorphisms with breast cancer risk and prognosis in Tunisian patients. EGFR 142285G>A and ESR1 2014G>A were genotyped in a sample of 148 Tunisian breast cancer patients and 303 controls using PCR-RFLP method. Immunohistochemitsry was used to evaluate the expression levels of EGFR, HER2, ESR1, progesterone receptor and BCL2 in tumors. We found no evidence for an association between EGFR R521K polymorphism and breast cancer risk. However, we found that the homozygous GG (Arg) genotype was more prevalent in patients with lymph node metastasis (=.03) and high grade tumors (=.011). The ESR1 2014G allele showed significant association with breast cancer risk (=.025). The GG genotype was associated with HER2 overexpression and this association withstood univariate and multivariate analyses (=.009; =.021, resp.). These data suggest that the R521K might be a prognostic factor, because it correlates with both tumor grade and nodule status. The higher expression of HER2 in ESR1 T594T GG patients suggests the possibility that ESR1 gene polymorphisms accompanied by HER2 expression might influence the pathogenesis of breast cancers

    Phlebotomus papatasi Yellow-Related and Apyrase Salivary Proteins Are Candidates for Vaccination against Human Cutaneous Leishmaniasis.

    No full text
    International audienceNowadays, there is no available vaccine for human leishmaniasis. Animal experiments demonstrate that pre-exposure to sand fly saliva confers protection against leishmaniasis. Our preceding work in humans indicates that Phlebotomus papatasi saliva induces the production of IL-10 by CD8+ T lymphocytes. The neutralization of IL-10 enhanced the activation of a T-cell CD4+ population-producing IFN-γ. Herein, we used a biochemical and functional genomics approach to identify the sand fly salivary components that are responsible for the activation of the T helper type 1 immune response in humans, therefore constituting potential vaccine candidates against leishmaniasis. Fractionated P. papatasi salivary extracts were first tested on T lymphocytes of immune donors. We confirmed that the CD4+ lymphocytes proliferate and produce IFN-γ in response to stimulation with the proteins of molecular weight \textgreater30 kDa. Peripheral blood mononuclear cells from immune donors were transfected with plasmids coding for the most abundant proteins from the P. papatasi salivary gland cDNA library. Our result showed that the "yellow related proteins," PPTSP42 and PPTSP44, and "apyrase," PPTSP36, are the proteins responsible for the aforementioned cellular immune response and IFN-γ production. Strikingly, PPTSP44 triggered the highest level of lymphocyte proliferation and IFN-γ production. Multiplex cytokine analysis confirmed the T helper type 1-polarized response induced by these proteins. Importantly, recombinant PPTSP44 validated the results observed with the DNA plasmid, further supporting that PPTSP44 constitutes a promising vaccine candidate against human leishmaniasis

    Validation of Recombinant Salivary Protein PpSP32 as a Suitable Marker of Human Exposure to Phlebotomus papatasi, the Vector of Leishmania major in Tunisia

    No full text
    International audienceBackground During a blood meal, female sand flies, vectors of Leishmania parasites, inject saliva into the host skin. Sand fly saliva is composed of a large variety of components that exert different pharmacological activities facilitating the acquisition of blood by the insect. Importantly, proteins present in saliva are able to elicit the production of specific anti-saliva antibodies, which can be used as markers for exposure to vector bites. Serological tests using total sand fly salivary gland extracts are challenging due to the difficulty of obtaining reproducible salivary gland preparations. Previously, we demonstrated that PpSP32 is the immunodominant salivary antigen in humans exposed to Phlebotomus papatasi bites and established that humans exposed to P. perniciosus bites do not recognize it. Methodology/Principal Findings Herein, we have validated, in a large cohort of 522 individuals, the use of the Phlebotomus papatasi recombinant salivary protein PpSP32 (rPpSP32) as an alternative method for testing exposure to the bite of this sand fly. We also demonstrated that screening for total anti-rPpSP32 IgG antibodies is sufficient, being comparable in efficacy to the screening for IgG2, IgG4 and IgE antibodies against rPpSP32. Additionally, sera obtained from dogs immunized with saliva of P. perniciosus, a sympatric and widely distributed sand fly in Tunisia, did not recognize rPpSP32 demonstrating its suitability as a marker of exposure to P. papatasi saliva. Conclusions/Significance Our data indicate that rPpSP32 constitutes a useful epidemiological tool to monitor the spatial distribution of P. papatasi in a particular region, to direct control measures against zoonotic cutaneous leishmaniasis, to assess the efficiency of vector control interventions and perhaps to assess the risk of contracting the disease

    ROC curve of rPpSP32 antibodies predicting ELISA positivity against SGE.

    No full text
    <p><b>(A)</b> ROC curve was performed using data of the serology against the rPpSP32 obtained from 209 individuals exhibited anti-SGE antibodies and 313 who did not. The area under curves (AUC) and the p value of the ROC curve are shown. <b>(B)</b> Sensitivity and specificity with 95% confidence interval (CI) for different cut-off values are also shown.</p

    Analysis of cross-reactivity between <i>P</i>. <i>papatasi</i> SP32 and <i>P</i>. <i>perniciosus</i> saliva.

    No full text
    <p>The reactivity of immune and pre-immune sera obtained from dogs exposed to <i>P</i>. <i>perniciosus</i> bites was tested by ELISA against <i>P</i>. <i>perniciosus</i> salivary gland extract (SGE), rPpSP32 or <i>P</i>. <i>papatasi</i> SGE. The threshold of positivity was calculated as the mean optical density (OD) of pre-immune sera plus 3 standard deviations.</p
    corecore