655 research outputs found

    Cloud-based Wizard of Oz as a service

    Get PDF
    The paper deals with theoretical and experimental issues of an idea towards a cloud-based Wizard of Oz in the Microsoft Azure cloud environment. Wizard of Oz is a common tool in social robotics and especially in specific applications like mental illness treatment, ambient assisted living, and many others. The final goal is to create a system with the ability to learn and replace a human wizard by an intelligent software agent, which simulates the behavior of the human. ïżœ 2015 IEEE

    The dynamics and observability of circularly polarized kink waves

    Get PDF
    Context. Kink waves are routinely observed in coronal loops. Resonant absorption is a well-accepted mechanism that extracts energy from kink waves. Nonlinear kink waves are know to be affected by the Kelvin-Helmholtz instability. However, all previous numerical studies consider linearly polarized kink waves. Aims. We study the properties of circularly polarized kink waves on straight plasma cylinders, for both standing and propagating waves, and we compare them to the properties of linearly polarized kink waves. Methods. We used the code MPI-AMRVAC to solve the full 3D magnetohydrodynamic equations for a straight magnetic cylinder, excited by both standing and propagating circularly polarized kink (m = 1) modes. Results. The damping due to resonant absorption is independent of the polarization state. The morphology or appearance of the induced resonant flow is different for the two polarizations; however, there are essentially no differences in the forward-modeled Doppler signals. For nonlinear oscillations, the growth rate of small scales is determined by the total energy of the oscillation rather than the perturbation amplitude. We discuss possible implications and seismological relevance

    Exact-exchange density-functional calculations for noble-gas solids

    Full text link
    The electronic structure of noble-gas solids is calculated within density functional theory's exact-exchange method (EXX) and compared with the results from the local-density approximation (LDA). It is shown that the EXX method does not reproduce the fundamental energy gaps as well as has been reported for semiconductors. However, the EXX-Kohn-Sham energy gaps for these materials reproduce about 80 % of the experimental optical gaps. The structural properties of noble-gas solids are described by the EXX method as poorly as by the LDA one. This is due to missing Van der Waals interactions in both, LDA and EXX functionals.Comment: 4 Fig

    Physical Controls on Carbonate Intraclasts: Modern Flat Pebbles From Great Salt Lake, Utah

    Get PDF
    In carbonate‐forming environments, authigenic minerals can cement surface sediments into centimeter‐sized intraclasts that are later reworked into “flat‐pebble” or “edgewise” conglomerates. Flat‐pebble conglomerates comprise only a small portion of facies in modern marine environments but are common in ancient strata, implying that seafloor cements were more widespread in the past. Flat‐pebble conglomerates nearly disappeared after the Ordovician radiation, yet it is unclear if this decline was due to changing seawater chemistry or if increased infaunalization and bioturbation simply worked to break down nascent clasts. We discovered a process analog that produces flat‐pebble conglomerates around the Great Salt Lake, Utah, USA, and studied these facies using field observations, wave models, satellite imagery, petrography, and microanalytic chemical data. Clasts were sourced from wave‐rippled grainstone that cemented in situ in offshore environments. Lake floor cements formed under aragonite saturation states that are lower than modern marine settings, suggesting that physical processes are at least as important as chemical ones. Results from our wave models showed that coarse sediments near the field site experience quiescent periods of up to 6 months between suspension events, allowing isopachous cements to form. Using a simple mathematical framework, we show that the main difference between Great Salt Lake and modern, low‐energy marine settings is that the latter has enough bioturbating organisms to break up clasts. Observations from Great Salt Lake demonstrate how geologic trends in flat‐pebble abundance could largely reflect changes in total infaunal biomass and ecology without requiring regional‐to‐global changes in seawater chemistry

    Physical Controls on Carbonate Intraclasts: Modern Flat Pebbles From Great Salt Lake, Utah

    Get PDF
    In carbonate‐forming environments, authigenic minerals can cement surface sediments into centimeter‐sized intraclasts that are later reworked into “flat‐pebble” or “edgewise” conglomerates. Flat‐pebble conglomerates comprise only a small portion of facies in modern marine environments but are common in ancient strata, implying that seafloor cements were more widespread in the past. Flat‐pebble conglomerates nearly disappeared after the Ordovician radiation, yet it is unclear if this decline was due to changing seawater chemistry or if increased infaunalization and bioturbation simply worked to break down nascent clasts. We discovered a process analog that produces flat‐pebble conglomerates around the Great Salt Lake, Utah, USA, and studied these facies using field observations, wave models, satellite imagery, petrography, and microanalytic chemical data. Clasts were sourced from wave‐rippled grainstone that cemented in situ in offshore environments. Lake floor cements formed under aragonite saturation states that are lower than modern marine settings, suggesting that physical processes are at least as important as chemical ones. Results from our wave models showed that coarse sediments near the field site experience quiescent periods of up to 6 months between suspension events, allowing isopachous cements to form. Using a simple mathematical framework, we show that the main difference between Great Salt Lake and modern, low‐energy marine settings is that the latter has enough bioturbating organisms to break up clasts. Observations from Great Salt Lake demonstrate how geologic trends in flat‐pebble abundance could largely reflect changes in total infaunal biomass and ecology without requiring regional‐to‐global changes in seawater chemistry

    Single crystal diamond membranes for nanoelectronics

    Full text link
    © 2018 The Royal Society of Chemistry. Single crystal, nanoscale diamond membranes are highly sought after for a variety of applications including nanophotonics, nanoelectronics and quantum information science. However, so far, the availability of conductive diamond membranes has remained an unreachable goal. In this work we present a complete nanofabrication methodology for engineering high aspect ratio, electrically active single crystal diamond membranes. The membranes have large lateral directions, exceeding ∌500 × 500 ÎŒm2 and are only several hundreds of nanometers thick. We further realize vertical single crystal p-n junctions made from the diamond membranes that exhibit onset voltages of ∌10 V and a current of several mA. Moreover, we deterministically introduce optically active color centers into the membranes, and demonstrate for the first time a single crystal nanoscale diamond LED. The robust and scalable approach to engineer the electrically active single crystal diamond membranes offers new pathways for advanced nanophotonic, nanoelectronic and optomechanical devices employing diamond

    Comparison of virulence of Francisella tularensis ssp. holarctica genotypes B.12 and B.FTNF002-00

    Get PDF
    BACKGROUND: Two main genetic groups (B.12 and B.FTNF002-00) of Francisella tularensis ssp. holarctica are endemic in Europe. The B.FTNF002-00 group proved to be dominant in Western European countries, while strains of the B.12 group were isolated mainly in Northern, Central and Eastern Europe. The clinical course of tularemia in the European brown hare (Lepus europaeus) also shows distinct patterns according to the geographical area. Acute course of the disease is observed in hares in Western European countries, while signs of sub-acute or chronic infection are more frequently detected in the eastern part of the continent. The aim of the present study was to examine whether there is any difference in the virulence of the strains belonging to the B.FTNF002-00 and B.12 genetic clades. RESULTS: Experimental infection of Fischer 344 rats was performed by intra-peritoneal injection of three dilutions of a Hungarian (B.12 genotype) and an Italian (B.FTNF002-00 genotype) F. tularensis ssp. holarctica strain. Moderate difference was observed in the virulence of the two genotypes. Significant differences were observed in total weight loss values and scores of clinical signs between the two genotypes with more rats succumbing to tularemia in groups infected with the B.FTNF002-00 genotype. CONCLUSIONS: Results of the experimental infection are consistent with previous clinical observations and pathological studies suggesting that F. tularensis ssp. holarctica genotype B.FTNF002-00 has higher pathogenic potential than the B.12 genotype. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-017-0968-9) contains supplementary material, which is available to authorized users

    Effects of side-dominance on knee joint proprioceptive target-matching asymmetries

    Get PDF
    Aims Right- and left-side-dominant individuals reveal target-matching asymmetries between joints of the dominant and non-dominant upper limbs. However, it is unclear if such asymmetries are also present in lower limb’s joints. We hypothesized that right-side-dominant participants perform knee joint target-matching tasks more accurately with their non-dominant leg compared to left-side-dominant participants. Methods Participants performed position sense tasks using each leg by moving each limb separately and passively on an isokinetic dynamometer. Results Side-dominance affected (p < 0.05) knee joint absolute position errors only in the non-dominant leg but not in the dominant leg: right-side-dominant participants produced less absolute position errors (2.82° ± 0.72°) with the non-dominant leg compared to left-side-dominant young participants (3.54° ± 0.33°). Conclusions In conclusion, right-side-dominant participants tend to perform a target-matching task more accurately with the non-dominant leg compared to left-side-dominant participants. Our results extend the literature by showing that right-hemisphere specialization under proprioceptive target-matching tasks may be not evident at the lower limb joints
    • 

    corecore