880 research outputs found
A New Role for the Parahippocampal Cortex in Representing Space
The debate surrounding the function of the human posterior parahippocampal cortex (PHC) is currently dominated by two competing theories. The spatial layout hypothesis proposes that PHC processes information about the shape of space embodied in layout-defining scene features. The contextual association hypothesis rejects this notion, proposing instead that PHC responds to highly contextualized, but not necessarily spatial, stimuli. Here we present a novel concept that suggests PHC is primarily concerned with any representation that depicts three-dimensional local space, be it scenes or even single objects. Specifically, we identified space-defining (SD) and space-ambiguous (SA) single objects, where SD objects consistently evoke a strong sense of the surrounding space while SA objects do not, in the absence of any background, spatial layout, or context. We found that participants could easily identify and distinguish between SD and SA objects. This distinction was subsequently affirmed at a neural level, where visualizing or viewing single SD objects compared with SA objects engaged PHC, despite these single SD objects offering no information about the shape or layout of the space. Moreover, this PHC response was robust and not accounted for by other factors, including contextual associations. Instead, it was linked to intrinsic object properties, specifically a combination of perceived object size and portability. By showing that PHC is responsive to the awareness of surrounding local space suggests its role in scene processing is basic and fundamental, such that it is not dependent on complex scene properties such as geometric structure, scene schema, or contextual associations
Constructing, Perceiving, and Maintaining Scenes: Hippocampal Activity and Connectivity.
In recent years, evidence has accumulated to suggest the hippocampus plays a role beyond memory. A strong hippocampal response to scenes has been noted, and patients with bilateral hippocampal damage cannot vividly recall scenes from their past or construct scenes in their imagination. There is debate about whether the hippocampus is involved in the online processing of scenes independent of memory. Here, we investigated the hippocampal response to visually perceiving scenes, constructing scenes in the imagination, and maintaining scenes in working memory. We found extensive hippocampal activation for perceiving scenes, and a circumscribed area of anterior medial hippocampus common to perception and construction. There was significantly less hippocampal activity for maintaining scenes in working memory. We also explored the functional connectivity of the anterior medial hippocampus and found significantly stronger connectivity with a distributed set of brain areas during scene construction compared with scene perception. These results increase our knowledge of the hippocampus by identifying a subregion commonly engaged by scenes, whether perceived or constructed, by separating scene construction from working memory, and by revealing the functional network underlying scene construction, offering new insights into why patients with hippocampal lesions cannot construct scenes
Scenes, Spaces, and Memory Traces: What Does the Hippocampus Do?
The hippocampus is one of the most closely scrutinized brain structures in neuroscience. While traditionally associated with memory and spatial cognition, in more recent years it has also been linked with other functions, including aspects of perception and imagining fictitious and future scenes. Efforts continue apace to understand how the hippocampus plays such an apparently wide-ranging role. Here we consider recent developments in the field and in particular studies of patients with bilateral hippocampal damage. We outline some key findings, how they have subsequently been challenged, and consider how to reconcile the disparities that are at the heart of current lively debates in the hippocampal literature
Scene construction in developmental amnesia: An fMRI study.
Amnesic patients with bilateral hippocampal damage sustained in adulthood are generally unable to construct scenes in their imagination. By contrast, patients with developmental amnesia (DA), where hippocampal damage was acquired early in life, have preserved performance on this task, although the reason for this sparing is unclear. One possibility is that residual function in remnant hippocampal tissue is sufficient to support basic scene construction in DA. Such a situation was found in the one amnesic patient with adult-acquired hippocampal damage (P01) who could also construct scenes. Alternatively, DA patients' scene construction might not depend on the hippocampus, perhaps being instead reliant on non-hippocampal regions and mediated by semantic knowledge. To adjudicate between these two possibilities, we examined scene construction during functional MRI (fMRI) in Jon, a well-characterised patient with DA who has previously been shown to have preserved scene construction. We found that when Jon constructed scenes he activated many of the regions known to be associated with imagining scenes in control participants including ventromedial prefrontal cortex, posterior cingulate, retrosplenial and posterior parietal cortices. Critically, however, activity was not increased in Jon's remnant hippocampal tissue. Direct comparisons with a group of control participants and patient P01, confirmed that they activated their right hippocampus more than Jon. Our results show that a type of non-hippocampal dependent scene construction is possible and occurs in DA, perhaps mediated by semantic memory, which does not appear to involve the vivid visualisation of imagined scenes
A New Role for the Parahippocampal Cortex in Representing Space
The debate surrounding the function of the human posterior parahippocampal cortex (PHC) is currently dominated by two competing theories. The spatial layout hypothesis proposes that PHC processes information about the shape of space embodied in layout-defining scene features. The contextual association hypothesis rejects this notion, proposing instead that PHC responds to highly contextualized, but not necessarily spatial, stimuli. Here we present a novel concept that suggests PHC is primarily concerned with any representation that depicts three-dimensional local space, be it scenes or even single objects. Specifically, we identified space-defining (SD) and space-ambiguous (SA) single objects, where SD objects consistently evoke a strong sense of the surrounding space while SA objects do not, in the absence of any background, spatial layout, or context. We found that participants could easily identify and distinguish between SD and SA objects. This distinction was subsequently affirmed at a neural level, where visualizing or viewing single SD objects compared with SA objects engaged PHC, despite these single SD objects offering no information about the shape or layout of the space. Moreover, this PHC response was robust and not accounted for by other factors, including contextual associations. Instead, it was linked to intrinsic object properties, specifically a combination of perceived object size and portability. By showing that PHC is responsive to the awareness of surrounding local space suggests its role in scene processing is basic and fundamental, such that it is not dependent on complex scene properties such as geometric structure, scene schema, or contextual associations
The Hippocampus: A Manifesto for Change.
We currently lack a unified and mechanistic account of how the hippocampus supports a range of disparate cognitive functions that includes episodic memory, imagining the future, and spatial navigation. Here, we argue that in order to leverage this long-standing issue, traditional notions regarding the architecture of memory should be eschewed. Instead, we invoke the idea that scenes are central to hippocampal information processing. This view is motivated by mounting evidence that the hippocampus is constantly constructing spatially coherent scenes, automatically anticipating and synthesizing representations of the world beyond the immediate sensorium. By characterizing the precise relationship between scenes and the hippocampus, we believe a theoretically enriched understanding of its fundamental role and its breakdown in pathology can emerge. (PsycINFO Database Record (c) 2013 APA, all rights reserved)
Memory, imagination, and predicting the future: A common brain mechanism?
On the face of it, memory, imagination, and prediction seem to be distinct cognitive functions. However, metacognitive, cognitive, neuropsychological, and neuroimaging evidence is emerging that they are not, suggesting intimate links in their underlying processes. Here, we explore these empirical findings and the evolving theoretical frameworks that seek to explain how a common neural system supports our recollection of times past, imagination, and our attempts to predict the future
Retrosplenial cortex codes for permanent landmarks.
Landmarks are critical components of our internal representation of the environment, yet their specific properties are rarely studied, and little is known about how they are processed in the brain. Here we characterised a large set of landmarks along a range of features that included size, visual salience, navigational utility, and permanence. When human participants viewed images of these single landmarks during functional magnetic resonance imaging (fMRI), parahippocampal cortex (PHC) and retrosplenial cortex (RSC) were both engaged by landmark features, but in different ways. PHC responded to a range of landmark attributes, while RSC was engaged by only the most permanent landmarks. Furthermore, when participants were divided into good and poor navigators, the latter were significantly less reliable at identifying the most permanent landmarks, and had reduced responses in RSC and anterodorsal thalamus when viewing such landmarks. The RSC has been widely implicated in navigation but its precise role remains uncertain. Our findings suggest that a primary function of the RSC may be to process the most stable features in an environment, and this could be a prerequisite for successful navigation
Boundary extension is attenuated in patients with ventromedial prefrontal cortex damage
The ventromedial prefrontal cortex (vmPFC) and hippocampus have been implicated in the mental construction of scenes and events. However, little is known about their specific contributions to these cognitive functions. Boundary extension (BE) is a robust indicator of fast, automatic, and implicit scene construction. BE occurs when individuals who are viewing scenes automatically imagine what might be beyond the view, and consequently later misremember having seen a greater expanse of the scene. Patients with hippocampal damage show attenuated BE because of their scene construction impairment. In the current study, we administered BE tasks to patients with vmPFC damage, brain-damaged control patients, and healthy control participants. We also contrasted the performance of these patients to the previously-published data from patients with hippocampal lesions (Mullally, Intraub, & Maguire, 2012). We found that vmPFC-damaged patients showed reduced BE compared to brain-damaged and healthy controls. Indeed, BE attenuation was similar following vmPFC or hippocampal damage. Notably, however, whereas hippocampal damage seems to particularly impair the spatial coherence of scenes, vmPFC damage leads to a difficulty constructing scenes in a broader sense, with the prediction of what should be in a scene, and the monitoring or integration of the scene elements being particularly compromised. We conclude that vmPFC and hippocampus play important and complementary roles in scene construction
Toxic metal enrichment and boating intensity: sediment records of antifoulant copper in shallow lakes of eastern England
Tributyltin (TBT), an aqueous biocide derived from antifouling paint pollution, is known to have impacted coastal marine ecosystems, and has been reported in the sediment of the Norfolk and Suffolk Broads, a network of rivers and shallow lakes in eastern England. In the marine environment, the 1987 TBT ban has resulted in expanded use of alternative biocides, raising the question of whether these products too have impacted the Broads ecosystem and freshwaters in general. Here we examine the lake sediment record in the Norfolk and Suffolk Broads for contamination by copper (Cu) (as an active biocide agent) and zinc (Zn) (as a component of booster biocides), to assess their occurrence and potential for causing environmental harm in freshwater ecosystems. We find that, after the introduction of leisure boating, there is a statistically significant difference in Cu enrichment between heavily and lightly boated sites, while no such difference exists prior to this time. At the heavily boated sites the onset of Cu enrichment coincides with a period of rapid increase in leisure boating. Such enrichment is maintained to the present day, with some evidence of continued increase. We conclude that Cu-based antifouling has measurably contaminated lakes exposed to boating, at concentrations high enough to cause ecological harm. Similar findings can be expected at other boated freshwater ecosystems elsewhere in the world
- …