13 research outputs found

    The Neglected Tropical Diseases of Latin America and the Caribbean: A Review of Disease Burden and Distribution and a Roadmap for Control and Elimination

    Get PDF
    The neglected tropical diseases (NTDs) represent some of the most common infections of the poorest people living in the Latin American and Caribbean region (LAC). Because they primarily afflict the disenfranchised poor as well as selected indigenous populations and people of African descent, the NTDs in LAC are largely forgotten diseases even though their collective disease burden may exceed better known conditions such as of HIV/AIDS, tuberculosis, or malaria. Based on their prevalence and healthy life years lost from disability, hookworm infection, other soil-transmitted helminth infections, and Chagas disease are the most important NTDs in LAC, followed by dengue, schistosomiasis, leishmaniasis, trachoma, leprosy, and lymphatic filariasis. On the other hand, for some important NTDs, such as leptospirosis and cysticercosis, complete disease burden estimates are not available. The NTDs in LAC geographically concentrate in 11 different sub-regions, each with a distinctive human and environmental ecology. In the coming years, schistosomiasis could be eliminated in the Caribbean and transmission of lymphatic filariasis and onchocerciasis could be eliminated in Latin America. However, the highest disease burden NTDs, such as Chagas disease, soil-transmitted helminth infections, and hookworm and schistosomiasis co-infections, may first require scale-up of existing resources or the development of new control tools in order to achieve control or elimination. Ultimately, the roadmap for the control and elimination of the more widespread NTDs will require an inter-sectoral approach that bridges public health, social services, and environmental interventions

    Intruders below the Radar: Molecular Pathogenesis of Bartonella spp

    No full text
    Summary: Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease
    corecore