147 research outputs found

    Redox-Neutral Organometallic Elementary Steps at Bismuth: Catalytic Synthesis of Aryl Sulfonyl Fluorides

    Get PDF
    A Bi-catalyzed synthesis of sulfonyl fluorides from the corresponding (hetero)aryl boronic acids is presented. We demonstrate that the organobismuth(III) catalysts bearing a bis-aryl sulfone ligand backbone revolve through different canonical organometallic steps within the catalytic cycle without modifying the oxidation state. All steps have been validated, including the catalytic insertion of SO2 into Bi–C bonds, leading to a structurally unique O-bound bismuth sulfinate complex. The catalytic protocol affords excellent yields for a wide range of aryl and heteroaryl boronic acids, displaying a wide functional group tolerance

    (Hetero)aryl-S<sup>VI</sup> Fluorides: Synthetic Development and Opportunities

    Get PDF
    (Hetero)arylsulfur compounds where the S atom is in the oxidation state VI represent a large percentage of the molecular functionalities present in organic chemistry. More specifically, (hetero)aryl-SVI fluorides have recently received enormous attention because of their potential as chemical biology probes, as a result of their reactivity in a simple, modular, and efficient manner. Whereas the synthesis and application of the level 1 fluorination at SVI atoms (sulfonyl and sulfonimidoyl fluorides) have been widely studied and reviewed, the synthetic strategies towards higher levels of fluorination (levels 2 to 5) are somewhat more limited. This Minireview evaluates and summarizes the progress in the synthesis of highly fluorinated aryl-SVI compounds at all levels, discussing synthetic strategies, reactivity, the advantages and disadvantages of the synthetic procedures, the proposed mechanisms, and the potential upcoming opportunities

    Dibismuthanes in catalysis: from synthesis and characterization to redox behavior towards oxidative cleavage of 1,2-diols

    Get PDF
    A family of aryl dinuclear bismuthane complexes has been successfully synthesized and characterized. The two bismuth centers are bonded to various xanthene-type backbones, which differ in ring-size and flexibility, resulting in complexes with different intramolecular Bi⋯Bi distances. Moreover, their pentavalent Bi(V) analogues have also been prepared and structurally characterized. Finally, the synergy between bismuth centers in catalysis has been studied by applying dinuclear bismuthanes 5–8 to the catalytic oxidative cleavage of 1,2-diols. Unfortunately, no synergistic effects were observed and the catalytic activities of dinuclear bismuthanes and triphenylbismuth are comparable

    Synthesis and Structure of Mono-, Di-, and Trinuclear Fluorotriarylbismuthonium Cations

    Get PDF
    A series of cationic fluorotriarylbismuthonium salts bearing differently substituted aryl groups (Ar = 9,9-Me2-9H-xanthene, Ph, Mes, and 3,5-tBu-C6H3) have been synthesized and characterized. While the presence of simple phenyl substituents around the Bi center results in a polymeric structure with three Bi centers in the repeating monomer, substituents at the ortho- and meta-positions lead to cationic mono- and dinuclear fluorobismuthonium complexes, respectively. Preparation of all compounds is accomplished by fluoride abstraction from the parent triaryl Bi(V) difluorides using NaBArF (BArF- = B[C6H3-3,5-(CF3)2]4–). Structural parameters were obtained via single crystal X-ray diffraction (XRD), and their behavior in solution was studied by NMR spectroscopy. Trinuclear and binuclear complexes are held together through one bridging fluoride (μ-F) between two Bi(V) centers. In contrast, the presence of Me groups in both ortho-positions of the aryl ring provides the adequate steric encumbrance to isolate a unique mononuclear nonstabilized fluorotriarylbismuthonium cation. This compound features a distorted tetrahedral geometry and is remarkably stable at room temperature both in solution (toluene, benzene and THF) and in the solid state

    25 anys de castells de nou

    Get PDF

    Cochlear implant positioning:development and validation of an automatic method using computed tomography image analysis

    Get PDF
    The aim of this study was to preoperatively asses the feasibility of drilling a bony recess for the fixation of a cochlear implant in the temporal bone. Even though complications are rare with cochlear implantations, drilling at the site of implantation have resulted in hematoma or cerebrospinal fluid leakage. Mainly in cases with a reduced temporal bone thickness, the risk for complications has increased, such as in paediatric patients.Methods An in-house designed semi-automatic algorithm was developed to analyse a 3D model of the skull. The feasibility of drilling the recess was determined by a gradient descent method to search for the thickest part of the temporal bone. Feasibility was determined by the residual bone thickness which was calculated after a simulated drilling of the recess at the thickest position. An initial validation of the algorithm was performed by measuring the accuracy of the algorithm on five 3D models with known thickest locations for the recess. The accuracy was determined by a part comparison between the known position and algorithm provided position.Results In four of the five validation models a standard deviation for accuracy below the predetermined cut-off value of 4.2 mm was achieved between the actual thickest position and the position determined by the algorithm. Furthermore, the residual thickness calculated by the algorithm showed a high agreement (max. 0.02 mm difference) with the actual thickness.Conclusion With the developed algorithm, a semi-automatic method was created to analyse the temporal bone thickness within a specified region of interest on the skull. Thereby, providing indications for surgical feasibility, potential risks for anatomical structures and impact on procedure time of cochlear implantation. This method could be a valuable research tool to objectively assess feasibility of drilling a recess in patients with thin temporal bones preoperatively

    The Potential of Electrospinning to Enable the Realization of Energy-Autonomous Wearable Sensing Systems

    Get PDF
    The market for wearable electronic devices is experiencing significant growth and increasing potential for the future. Researchers worldwide are actively working to improve these devices, particularly in developing wearable electronics with balanced functionality and wearability for commercialization. Electrospinning, a technology that creates nano/microfiber-based membranes with high surface area, porosity, and favorable mechanical properties for human in vitro and in vivo applications using a broad range of materials, is proving to be a promising approach. Wearable electronic devices can use mechanical, thermal, evaporative and solar energy harvesting technologies to generate power for future energy needs, providing more options than traditional sources. This review offers a comprehensive analysis of how electrospinning technology can be used in energy-autonomous wearable wireless sensing systems. It provides an overview of the electrospinning technology, fundamental mechanisms, and applications in energy scavenging, human physiological signal sensing, energy storage, and antenna for data transmission. The review discusses combining wearable electronic technology and textile engineering to create superior wearable devices and increase future collaboration opportunities. Additionally, the challenges related to conducting appropriate testing for market-ready products using these devices are also discussed

    Genetic Variance in the Adiponutrin Gene Family and Childhood Obesity

    Get PDF
    AIM: The adiponutrin gene family consists of five genes (PNPLA1-5) coding for proteins with both lipolytic and lipogenic properties. PNPLA3 has previously been associated with adult obesity. Here we investigated the possible association between genetic variants in these genes and childhood and adolescent obesity. METHODS/RESULTS: Polymorphisms in the five genes of the adiponutrin gene family were selected and genotyped using the Sequenom platform in a childhood and adolescent obesity case-control study. Six variants in PNPLA1 showed association with obesity (rs9380559, rs12212459, rs1467912, rs4713951, rs10947600, and rs12199580, p0.05). When analyzing these SNPs in relation to phenotypes, two SNPs in the PNPLA3 gene showed association with insulin sensitivity (rs12483959: beta = -0.053, p = 0.016, and rs2072907: beta = -0.049, p = 0.024). No associations were seen for PNPLA2, PNPLA4, and PNPLA5. CONCLUSIONS: Genetic variation in the adiponutrin gene family does not seem to contribute strongly to obesity in children and adolescents. PNPLA1 exhibited a modest effect on obesity and PNPLA3 on insulin sensitivity. These data, however, require confirmation in other cohorts and ethnic groups

    Tissue-Autonomous Function of Drosophila Seipin in Preventing Ectopic Lipid Droplet Formation

    Get PDF
    Obesity is characterized by accumulation of excess body fat, while lipodystrophy is characterized by loss or absence of body fat. Despite their opposite phenotypes, these two conditions both cause ectopic lipid storage in non-adipose tissues, leading to lipotoxicity, which has health-threatening consequences. The exact mechanisms underlying ectopic lipid storage remain elusive. Here we report the analysis of a Drosophila model of the most severe form of human lipodystrophy, Berardinelli-Seip Congenital Lipodystrophy 2, which is caused by mutations in the BSCL2/Seipin gene. In addition to reduced lipid storage in the fat body, dSeipin mutant flies accumulate ectopic lipid droplets in the salivary gland, a non-adipose tissue. This phenotype was suppressed by expressing dSeipin specifically within the salivary gland. dSeipin mutants display synergistic genetic interactions with lipogenic genes in the formation of ectopic lipid droplets. Our data suggest that dSeipin may participate in phosphatidic acid metabolism and subsequently down-regulate lipogenesis to prevent ectopic lipid droplet formation. In summary, we have demonstrated a tissue-autonomous role of dSeipin in ectopic lipid storage in lipodystrophy
    corecore