3 research outputs found

    The Pathogenicity of Anti-β2GP1-IgG Autoantibodies Depends on Fc Glycosylation

    Get PDF
    To analyze the glycosylation of anti-β2GP1, we investigated purified IgG from healthy children, patients with APS, and asymptomatic adult carriers of antiphospholipid antibodies. We observed that in the sera of healthy children and of patients with APS, IgG3 and IgG2 were predominant, respectively. The potentially protective anti-β2GP1-IgM was lower in the sera of healthy children. Although anti-β2GP1-associated C1q did not differ between children and patients with antiphospholipid syndrome, the associated C3c was significantly higher in the sera of healthy children. This indicates a more efficient clearance of anti-β2GP1 immune complexes in the healthy children. This clearance is not accompanied by inflammation or coagulatory events. It is likely that the most important pathogenic factor of the anti-β2GP1-IgG is related to the different glycosylation observed in healthy and diseased individuals. We detected a significantly higher sialylation of anti-β2GP1-IgG isolated from the sera of healthy children and asymptomatic adults when compared with that of patients with clinically apparent antiphospholipid syndrome. Low sialylated IgG reportedly ameliorates inflammation and inflammation promotes hyposialylation. Thus, both reactions create a vicious circle that precipitates the pathology of the antiphospholipid syndrome including thrombus-formation. We conclude that the increased sialylation of anti-β2GP1-IgG of sera of healthy individuals limits their pathogenicity

    Low amounts of bisecting glycans characterize cerebrospinal fluid-borne IgG

    Get PDF
    Immunoglobulin G (IgG) harbors a conserved N-glycosylation site which is important for its effector functions. Changes in glycosylation of IgG occur in many autoimmune diseases but also in physiological conditions. Therefore, the glycosylation pattern of serum IgG is well characterized. However, limited data is available on the glycosylation pattern of IgG in cerebrospinal fluid (CSF) compared to serum. Here, we report significantly reduced levels of bisected glycans in CSF IgG. Galactosylation and sialylation of IgG4 also differed significantly. Therefore, we propose a common mechanism mediating glycosylation changes of IgG at the transition from serum to CSF in steady state conditions

    Regulation of autoantibody activity by the IL-23–TH17 axis determines the onset of autoimmune disease

    No full text
    The checkpoints and mechanisms that contribute to autoantibody-driven disease are as yet incompletely understood. Here we identified the axis of interleukin 23 (IL-23) and the T(H)17 subset of helper T cells as a decisive factor that controlled the intrinsic inflammatory activity of autoantibodies and triggered the clinical onset of autoimmune arthritis. By instructing B cells in an IL-22- and IL-21-dependent manner, T(H)17 cells regulated the expression of β-galactoside α2,6-sialyltransferase 1 in newly differentiating antibody-producing cells and determined the glycosylation profile and activity of immunoglobulin G (IgG) produced by the plasma cells that subsequently emerged. Asymptomatic humans with rheumatoid arthritis (RA)-specific autoantibodies showed identical changes in the activity and glycosylation of autoreactive IgG antibodies before shifting to the inflammatory phase of RA; thus, our results identify an IL-23–T(H)17 cell–dependent pathway that controls autoantibody activity and unmasks a preexisting breach in immunotolerance
    corecore