43 research outputs found

    Can Immune Response Mechanisms Explain the Fecal Shedding Patterns of Cattle Infected with Mycobacterium avium Subspecies paratuberculosis?

    No full text
    Johne’s disease (JD) is a chronic disease in ruminants and is caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP). At late stages of the disease, MAP bacilli are shed via feces excretion and in turn create the potential for oral-fecal transmission. The role of the host immune response in MAP bacteria shedding patterns at different stages of JD is still unclear. We employed mathematical modeling to predict if the variation in MAP shedding could be correlated to the immune response in infected animals. We used a novel inverse modeling approach that assumed biological interactions among the antigen-specific lymphocyte proliferation response (cell-mediated response), antibody/humoral immune responses, and MAP bacteria. The modeling framework was used to predict and test possible biological interactions between the measured variables and returns only the essential interactions that are relevant in explaining the observed cattle MAP experimental infection data. Through confronting the models with data, we predicted observed effects (enhancement or suppression) and extents of interactions among the three variables. This analysis enabled classification of the infected cattle into three different groups that correspond to the unique predicted immune responses that are essential to explain the data from cattle within these groups. Our analysis highlights the strong and weak points of the modeling approach, as well as the key immune mechanisms predicted to be expressed in all animals and those that were different between animals, hence giving insight into how animals exhibit different disease dynamics and bacteria shedding patterns

    Predicting the Role of IL-10 in the Regulation of the Adaptive Immune Responses in Mycobacterium avium Subsp. paratuberculosis Infections Using Mathematical Models

    No full text
    Mycobacterium avium subsp. paratuberculosis (MAP) is an intracellular bacterial pathogen that causes Johne’s disease (JD) in cattle and other animals. The hallmark of MAP infection in the early stages is a strong protective cell-mediated immune response (Th1-type), characterized by antigen-specific γ-interferon (IFN-γ). The Th1 response wanes with disease progression and is supplanted by a non-protective humoral immune response (Th2-type). Interleukin-10 (IL-10) is believed to play a critical role in the regulation of host immune responses to MAP infection and potentially orchestrate the reversal of Th1/Th2 immune dominance during disease progression. However, how its role correlates with MAP infection remains to be completely deciphered. We developed mathematical models to explain probable mechanisms for IL-10 involvement in MAP infection. We tested our models with IL-4, IL-10, IFN-γ, and MAP fecal shedding data collected from calves that were experimentally infected and followed over a period of 360 days in the study of Stabel and Robbe-Austerman (2011). Our models predicted that IL-10 can have different roles during MAP infection, (i) it can suppress the Th1 expression, (ii) can enhance Th2 (IL-4) expression, and (iii) can suppress the Th1 expression in synergy with IL-4. In these predicted roles, suppression of Th1 responses was correlated with increased number of MAP. We also predicted that Th1-mediated responses (IFN-γ) can lead to high expression of IL-10 and that infection burden regulates Th2 suppression by the Th1 response. Our models highlight areas where more experimental data is required to refine our model assumptions, and further test and investigate the role of IL-10 in MAP infection

    Cellular and population plasticity of helper CD4(+) T cell responses

    Get PDF
    Vertebrates are constantly exposed to pathogens, and the adaptive immunity has most likely evolved to control and clear such infectious agents. CD4(+) T cells are the major players in the adaptive immune response to pathogens. Following recognition of pathogen-derived antigens naïve CD4(+) T cells differentiate into effectors which then control pathogen replication either directly by killing pathogen-infected cells or by assisting with generation of cytotoxic T lymphocytes (CTLs) or pathogen-specific antibodies. Pathogen-specific effector CD4(+) T cells are highly heterogeneous in terms of cytokines they produce. Three major subtypes of effector CD4(+) T cells have been identified: T-helper 1 (Th1) cells producing IFN-γ and TNF-α, Th2 cells producing IL-4 and IL-10, and Th17 cells producing IL-17. How this heterogeneity is maintained and what regulates changes in effector T cell composition during chronic infections remains poorly understood. In this review we discuss recent advances in our understanding of CD4(+) T cell differentiation in response to microbial infections. We propose that a change in the phenotype of pathogen-specific effector CD4(+) T cells during chronic infections, for example, from Th1 to Th2 response as observed in Mycobactrium avium ssp. paratuberculosis (MAP) infection of ruminants, can be achieved by conversion of T cells from one effector subset to another (cellular plasticity) or due to differences in kinetics (differentiation, proliferation, death) of different effector T cell subsets (population plasticity). We also shortly review mathematical models aimed at describing CD4(+) T cell differentiation and outline areas for future experimental and theoretical research. doi: 10.3389/fphys.2013.0020

    The specificity of phage testing for MAP — where might it fit into the diagnostic armoury?

    Get PDF
    The current individual tools available for the diagnosis of Johne's disease are far from suitable to tackle this endemic disease. Culture, polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) tests, when used together can be useful in managing the disease in the later stages of infection at a herd level. They are, however, ill-suited to detecting the causative agent Mycobacterium avium subsp. paratuberculosis (MAP) at the early stages of infection and at an individual level. Phage technology offers another tool in the attempt to better manage and control this disease. Phage-technology has been demonstrated to rapidly and sensitively detect and specifically identify viable MAP in the milk and blood of cattle. Although in relatively-early stages of development phage technology offers a strong addition to the armoury of tests used to detect MAP in blood and milk, and may go on to be part of ongoing control measures to reduce the burden of disease to farmers and veterinarians

    Systems medicine and infection

    Get PDF
    By using a systems based approach, mathematical and computational techniques can be used to develop models that describe the important mechanisms involved in infectious diseases. An iterative approach to model development allows new discoveries to continually improve the model, and ultimately increase the accuracy of predictions. SIR models are used to describe epi demics, predicting the extent and spread of disease. Genome-wide genotyping and sequencing technologies can be used to identify the biological mechanisms behind diseases. These tools help to build strategies for disease prevention and treatment, an example being the recent outbreak of Ebola in West Africa where these techniques were deployed. HIV is a complex disease where much is still to be learnt about the virus and the best effective treatment. With basic mathematical modelling techniques, significant discoveries have been made over the last 20 years. With recent technological advances, the computation al resources now available and interdisciplinary cooperation, further breakthroughs are inevitable. In TB, modelling has traditionally been empirical in nature, with clinical data providing the fuel for this top-down approach. Recently, projects have begun to use data derived from laboratory experiments and clinical trials to create mathematical models that describe the mechanisms responsible for the disease. A systems medicine approach to infection modelling helps identify important biological questions that then direct future experiments , the results of which improve the model in an iterative cycle . This means that data from several model systems can be integrated and synthesised to explore complex biological systems .Postprin

    Spatial Network Mapping of Pulmonary Multidrug-Resistant Tuberculosis Cavities Using RNA Sequencing.

    Get PDF
    Rationale: There is poor understanding about protective immunity and the pathogenesis of cavitation in patients with tuberculosis.Objectives: To map pathophysiological pathways at anatomically distinct positions within the human tuberculosis cavity.Methods: Biopsies were obtained from eight predetermined locations within lung cavities of patients with multidrug-resistant tuberculosis undergoing therapeutic surgical resection (n = 14) and healthy lung tissue from control subjects without tuberculosis (n = 10). RNA sequencing, immunohistochemistry, and bacterial load determination were performed at each cavity position. Differentially expressed genes were normalized to control subjects without tuberculosis, and ontologically mapped to identify a spatially compartmentalized pathophysiological map of the cavity. In silico perturbation using a novel distance-dependent dynamical sink model was used to investigate interactions between immune networks and bacterial burden, and to integrate these identified pathways.Measurements and Main Results: The median (range) lung cavity volume on positron emission tomography/computed tomography scans was 50 cm3 (15-389 cm3). RNA sequence reads (31% splice variants) mapped to 19,049 annotated human genes. Multiple proinflammatory pathways were upregulated in the cavity wall, whereas a downregulation "sink" in the central caseum-fluid interface characterized 53% of pathways including neuroendocrine signaling, calcium signaling, triggering receptor expressed on myeloid cells-1, reactive oxygen and nitrogen species production, retinoic acid-mediated apoptosis, and RIG-I-like receptor signaling. The mathematical model demonstrated that neuroendocrine, protein kinase C-θ, and triggering receptor expressed on myeloid cells-1 pathways, and macrophage and neutrophil numbers, had the highest correlation with bacterial burden (r > 0.6), whereas T-helper effector systems did not.Conclusions: These data provide novel insights into host immunity to Mycobacterium tuberculosis-related cavitation. The pathways defined may serve as useful targets for the design of host-directed therapies, and transmission prevention interventions

    Optimal Control of a Sex-Structured HIV/AIDS Model with Condom Use.

    No full text
    Optimal control theory is applied to a sex-structured HIV/AIDS model with condom use as an intervention strategy. An objective functional to maximise condom use in a population and minimise cases of infectious HIV is adopted. The optimal control is characterised and solved numerically. Simulation results suggest that high percentage of condom usage is associated with reduced HIV incidence,while high costs of condom usage campaigns reduces the percentage condom usage.Targeting issuance of condoms to infectious individuals enables reduction of condom usage campaign costs, hence ensures high percentage of condom usage
    corecore