23 research outputs found

    A comparative study of adjuvants effects on neonatal plasma cell survival niche in bone marrow and persistence of humoral immune responses

    Get PDF
    Funding Information: AP was a recipient of a doctoral study grant from the University of Iceland Research Fund (2015-18). This study was financially supported by grants from the Icelandic Research Fund (130675051-53), The University of Iceland Research Fund (2018-20) and the Landspitali Science Fund (A-2017-068, A-2017-069, A-2018-076, A-2018-077, A-2019-084). Publisher Copyright: Copyright © 2022 Aradottir Pind, Thorsdottir, Magnusdottir, Meinke, Del Giudice, Jonsdottir and Bjarnarson. Copyright © 2022 Aradottir Pind, Thorsdottir, Magnusdottir, Meinke, Del Giudice, Jonsdottir and Bjarnarson.The neonatal immune system is distinct from the immune system of older individuals rendering neonates vulnerable to infections and poor responders to vaccination. Adjuvants can be used as tools to enhance immune responses to co-administered antigens. Antibody (Ab) persistence is mediated by long-lived plasma cells that reside in specialized survival niches in the bone marrow, and transient Ab responses in early life have been associated with decreased survival of plasma cells, possibly due to lack of survival factors. Various cells can secrete these factors and which cells are the main producers is still up for debate, especially in early life where this has not been fully addressed. The receptor BCMA and its ligand APRIL have been shown to be important in the maintenance of plasma cells and Abs. Herein, we assessed age-dependent maturation of a broad range of bone marrow accessory cells and their expression of the survival factors APRIL and IL-6. Furthermore, we performed a comparative analysis of the potential of 5 different adjuvants; LT-K63, mmCT, MF59, IC31 and alum, to enhance expression of survival factors and BCMA following immunization of neonatal mice with tetanus toxoid (TT) vaccine. We found that APRIL expression was reduced in the bone marrow of young mice whereas IL-6 expression was higher. Eosinophils, macrophages, megakaryocytes, monocytes and lymphocytes were important secretors of survival factors in early life but undefined cells also constituted a large fraction of secretors. Immunization and adjuvants enhanced APRIL expression but decreased IL-6 expression in bone marrow cells early after immunization. Furthermore, neonatal immunization with adjuvants enhanced the proportion of plasmablasts and plasma cells that expressed BCMA both in spleen and bone marrow. Enhanced BCMA expression correlated with enhanced vaccine-specific humoral responses, even though the effect of alum on BCMA was less pronounced than those of the other adjuvants at later time points. We propose that low APRIL expression in bone marrow as well as low BCMA expression of plasmablasts/plasma cells in early life together cause transient Ab responses and could represent targets to be triggered by vaccine adjuvants to induce persistent humoral immune responses in this age group.Peer reviewe

    LT-K63 Enhances B Cell Activation and Survival Factors in Neonatal Mice That Translates Into Long-Lived Humoral Immunity

    Get PDF
    Funding text 1 AA was a recipient of a doctoral study grant from the University of Iceland Research Fund (2015–18). This study was financially supported by grants from the Icelandic Research Fund (130675051-53), The University of Iceland Research Fund (2014–17) and the Landspitali Science Fund A-2015-083, A2015-084, A-2016-067, A-2017-069. Funding text 2 Part of the work presented in this paper was presented as posters at the European Congress of Immunology, Vienna, Austria, 6?9. September 2015 (abstract no P.A.27.14 and P.A.27.15) and at V?sindi a? hausti, scientific conference at Landsp?tali - the National University Hospital of Iceland, Reykjav?k, 7. October 2020 (abstract number 8). Funding. AA was a recipient of a doctoral study grant from the University of Iceland Research Fund (2015?18). This study was financially supported by grants from the Icelandic Research Fund (130675051-53), The University of Iceland Research Fund (2014?17) and the Landspitali Science Fund A-2015-083, A2015-084, A-2016-067, A-2017-069. Publisher Copyright: © Copyright © 2020 Aradottir Pind, Molina Estupiñan, Magnusdottir, Del Giudice, Jonsdottir and Bjarnarson.Adjuvants enhance magnitude and duration of immune responses induced by vaccines. In this study we assessed in neonatal mice if and how the adjuvant LT-K63 given with a pneumococcal conjugate vaccine, Pnc1-TT, could affect the expression of tumor necrosis factor receptor (TNF-R) superfamily members, known to be involved in the initiation and maintenance of antibody responses; B cell activating factor receptor (BAFF-R) and B cell maturation antigen (BCMA) and their ligands, BAFF, and a proliferation inducing ligand (APRIL). Initially we assessed the maturation status of different B cell populations and their expression of BAFF-R and BCMA. Neonatal mice had dramatically fewer B cells than adult mice and the composition of different subsets within the B cell pool differed greatly. Proportionally newly formed B cells were most abundant, but they had diminished BAFF-R expression which could explain low proportions of marginal zone and follicular B cells observed. Limited BCMA expression was also detected in neonatal pre-plasmablasts/plasmablasts. LT-K63 enhanced vaccine-induced BAFF-R expression in splenic marginal zone, follicular and newly formed B cells, leading to increased plasmablast/plasma cells, and their enhanced expression of BCMA in spleen and bone marrow. Additionally, the induction of BAFF and APRIL expression occurred early in neonatal mice immunized with Pnc1-TT either with or without LT-K63. However, BAFF+ and APRIL+ cells in spleens were maintained at a higher level in mice that received the adjuvant. Furthermore, the early increase of APRIL+ cells in bone marrow was more profound in mice immunized with vaccine and adjuvant. Finally, we assessed, for the first time in neonatal mice, accessory cells of the plasma cell niche in bone marrow and their secretion of APRIL. We found that LT-K63 enhanced the frequency and APRIL expression of eosinophils, macrophages, and megakaryocytes, which likely contributed to plasma cell survival, even though APRIL+ cells showed a fast decline. All this was associated with enhanced, sustained vaccine-specific antibody-secreting cells in bone marrow and persisting vaccine-specific serum antibodies. Our study sheds light on the mechanisms behind the adjuvanticity of LT-K63 and identifies molecular pathways that should be triggered by vaccine adjuvants to induce sustained humoral immunity in early life.Peer reviewe

    Short Vi-polysaccharide abrogates T-independent immune response and hyporesponsiveness elicited by long Vi-CRM197 conjugate vaccine

    Get PDF
    Publisher Copyright: © 2020 National Academy of Sciences. All rights reserved.Polysaccharide-protein conjugates have been developed to overcome the T-independent response, hyporesponsiveness to repeated vaccination, and poor immunogenicity in infants of polysaccharides. To address the impact of polysaccharide length, typhoid conjugates made with short- and long-chain fractions of Vi polysaccharide with average sizes of 9.5, 22.8, 42.7, 82.0, and 165 kDa were compared. Long-chain-conjugated Vi (165 kDa) induced a response in both wild-type and T cell-deficient mice, suggesting that it maintains a T-independent response. In marked contrast, short-chain Vi (9.5 to 42.7 kDa) conjugates induced a response in wild-type mice but not in T cell-deficient mice, suggesting that the response is dependent on T cell help. Mechanistically, this was explained in neonatal mice, in which long-chain, but not short-chain, Vi conjugate induced late apoptosis of Vi-specific B cells in spleen and early depletion of Vi-specific B cells in bone marrow, resulting in hyporesponsiveness and lack of long-term persistence of Vi-specific IgG in serum and IgG+ antibody-secreting cells in bone marrow. We conclude that while conjugation of long-chain Vi generates T-dependent antigens, the conjugates also retain T-independent properties, leading to detrimental effects on immune responses. The data reported here may explain some inconsistencies observed in clinical trials and help guide the design of effective conjugate vaccines.Peer reviewe

    A Missense Variant in PLEC Increases Risk of Atrial Fibrillation.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowGenome-wide association studies (GWAS) have yielded variants at >30 loci that associate with atrial fibrillation (AF), including rare coding mutations in the sarcomere genes MYH6 and MYL4.The aim of this study was to search for novel AF associations and in doing so gain insights into the mechanisms whereby variants affect AF risk, using electrocardiogram (ECG) measurements.The authors performed a GWAS of 14,255 AF cases and 374,939 controls, using whole-genome sequence data from the Icelandic population, and tested novel signals in 2,002 non-Icelandic cases and 12,324 controls. They then tested the AF variants for effect on cardiac electrical function by using measurements in 289,297 ECGs from 62,974 individuals.The authors discovered 2 novel AF variants, the intergenic variant rs72700114, between the genes LINC01142 and METTL11B (risk allele frequency = 8.1%; odds ratio [OR]: 1.26; p = 3.1 × 10(-18)), and the missense variant p.Gly4098Ser in PLEC (frequency = 1.2%; OR: 1.55; p = 8.0 × 10(-10)), encoding plectin, a cytoskeletal cross-linking protein that contributes to integrity of cardiac tissue. The authors also confirmed 29 reported variants. p.Gly4098Ser in PLEC significantly affects various ECG measurements in the absence of AF. Other AF variants have diverse effects on the conduction system, ranging from none to extensive.The discovery of a missense variant in PLEC affecting AF combined with recent discoveries of variants in the sarcomere genes MYH6 and MYL4 points to an important role of myocardial structure in the pathogenesis of the disease. The diverse associations between AF variants and ECG measurements suggest fundamentally different categories of mechanisms contributing to the development of AF.Brigham and Women's Hospital from Amgen AstraZeneca Daiichi-Sankyo Eisai GlaxoSmithKline Intarcia Janssen MedImmune Merck Novartis Pfizer Poxel Taked

    A rare missense mutation in MYH6 associates with non-syndromic coarctation of the aorta.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadCoarctation of the aorta (CoA) accounts for 4-8% of congenital heart defects (CHDs) and confers substantial morbidity despite treatment. It is increasingly recognized as a highly heritable condition. The aim of the study was to search for sequence variants that affect the risk of CoA. We performed a genome-wide association study of CoA among Icelanders (120 cases and 355 166 controls) based on imputed variants identified through whole-genome sequencing. We found association with a rare (frequency = 0.34%) missense mutation p.Arg721Trp in MYH6 (odds ratio = 44.2, P = 5.0 × 10-22), encoding the alpha-heavy chain subunit of cardiac myosin, an essential sarcomere protein. Approximately 20% of individuals with CoA in Iceland carry this mutation. We show that p.Arg721Trp also associates with other CHDs, in particular bicuspid aortic valve. We have previously reported broad effects of p.Arg721Trp on cardiac electrical function and strong association with sick sinus syndrome and atrial fibrillation. Through a population approach, we found that a rare missense mutation p.Arg721Trp in the sarcomere gene MYH6 has a strong effect on the risk of CoA and explains a substantial fraction of the Icelanders with CoA. This is the first mutation associated with non-familial or sporadic form of CoA at a population level. The p.Arg721Trp in MYH6 causes a cardiac syndrome with highly variable expressivity and emphasizes the importance of sarcomere integrity for cardiac development and function.deCODE genetics/Amgen, Inc

    Short Vi-polysaccharide abrogates T-independent immune response and hyporesponsiveness elicited by long Vi-CRM 197

    Get PDF
    Polysaccharide-protein conjugates have been developed to overcome the T-independent response, hyporesponsiveness to repeated vaccination, and poor immunogenicity in infants of polysaccharides. To address the impact of polysaccharide length, typhoid conjugates made with short- and long-chain fractions of Vi polysaccharide with average sizes of 9.5, 22.8, 42.7, 82.0, and 165 kDa were compared. Long-chain-conjugated Vi (165 kDa) induced a response in both wild-type and T cell-deficient mice, suggesting that it maintains a T-independent response. In marked contrast, short-chain Vi (9.5 to 42.7 kDa) conjugates induced a response in wild-type mice but not in T cell-deficient mice, suggesting that the response is dependent on T cell help. Mechanistically, this was explained in neonatal mice, in which long-chain, but not short-chain, Vi conjugate induced late apoptosis of Vi-specific B cells in spleen and early depletion of Vi-specific B cells in bone marrow, resulting in hyporesponsiveness and lack of long-term persistence of Vi-specific IgG in serum and IgG+ antibody-secreting cells in bone marrow. We conclude that while conjugation of long-chain Vi generates T-dependent antigens, the conjugates also retain T-independent properties, leading to detrimental effects on immune responses. The data reported here may explain some inconsistencies observed in clinical trials and help guide the design of effective conjugate vaccines

    Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease

    No full text
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.Sequence variants affecting blood lipids and coronary artery disease (CAD) may enhance understanding of the atherogenicity of lipid fractions. Using a large resource of whole-genome sequence data, we examined rare and low-frequency variants for association with non-HDL cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides in up to 119,146 Icelanders. We discovered 13 variants with large effects (within ANGPTL3, APOB, ABCA1, NR1H3, APOA1, LIPC, CETP, LDLR, and APOC1) and replicated 14 variants. Five variants within PCSK9, APOA1, ANGPTL4, and LDLR associate with CAD (33,090 cases and 236,254 controls). We used genetic risk scores for the lipid fractions to examine their causal relationship with CAD. The non-HDL cholesterol genetic risk score associates most strongly with CAD (P = 2.7 x 10(-28)), and no other genetic risk score associates with CAD after accounting for non-HDL cholesterol. The genetic risk score for non-HDL cholesterol confers CAD risk beyond that of LDL cholesterol (P = 5.5 x 10(-8)), suggesting that targeting atherogenic remnant cholesterol may reduce cardiovascular risk.Emory Neuroscience NINDS Core Facilities grant P30NS055077 deCODE Genetics/Amgen Emory by NIH grants from the Clinical and Translational Science Award program / UL1RR025008 R01HL089650-0

    Overview of non-HDL-C associations in the region around <i>LDLR</i>.

    No full text
    <p>Plot <b>A</b> is a 0.8Mb overview centered on <i>LDLR</i> and plot <b>B</b> is a 70kb overview around the <i>LDLR</i> gene. Black circles show-log<sub>10</sub><i>P</i> as a function of build 36 coordinates for associations with non-HDL-C and red crosses correspond to non-HDL-C associations after adjusting for the four variants rs17248720, rs72658867, rs200238879 and rs17248748 that are indicated by vertical broken lines in plot b. Genes are shown in blue and recombination rates are reported in cM/Mb.</p
    corecore