5 research outputs found

    Flow cytometry for enrichment and titration in massively parallel DNA sequencing

    Get PDF
    Massively parallel DNA sequencing is revolutionizing genomics research throughout the life sciences. However, the reagent costs and labor requirements in current sequencing protocols are still substantial, although improvements are continuously being made. Here, we demonstrate an effective alternative to existing sample titration protocols for the Roche/454 system using Fluorescence Activated Cell Sorting (FACS) technology to determine the optimal DNA-to-bead ratio prior to large-scale sequencing. Our method, which eliminates the need for the costly pilot sequencing of samples during titration is capable of rapidly providing accurate DNA-to-bead ratios that are not biased by the quantification and sedimentation steps included in current protocols. Moreover, we demonstrate that FACS sorting can be readily used to highly enrich fractions of beads carrying template DNA, with near total elimination of empty beads and no downstream sacrifice of DNA sequencing quality. Automated enrichment by FACS is a simple approach to obtain pure samples for bead-based sequencing systems, and offers an efficient, low-cost alternative to current enrichment protocols

    Ligand binding mechanism in steroid receptors; from conserved plasticity to differential evolutionary constraints

    Get PDF
    Steroid receptor drugs have been available for more than half a century, but details 24 of the ligand binding mechanism has remained elusive. We solved X-ray structures of 25 the glucocorticoid and mineralocorticoid receptors to identify a conserved plasticity at 26 helix 6-7 region that extend the ligand binding pocket towards the receptor surface. 27 Since none of the endogenous ligands exploit this region, we hypothesized that it 28 constitutes an integral part of the binding event. Extensive all atom unbiased ligand 29 exit and entrance simulations corroborate a ligand binding pathway that gives the 30 observed structural plasticity a key functional role. Kinetic measurements reveal that 31 the receptor residence time correlate with structural rearrangements observed in both 32 structures and simulations. Ultimately, our findings reveal why nature has conserved 33 the capacity to open up this region and highlight how differences in the details of the 34 ligand entry process result in differential evolutionary constraints across the steroid 35 receptors.This study was supported by The European Research Council (2009-Adg25027-535 PELE) to V.G and by the SEV-2011-00067 grant of the Severo Ochoa Program. We 536 would like to acknowledge our AstraZeneca colleagues J. Hartleib, R.Unwin and 537 R.Knöll for helpful discussions. We also thank N. Blomberg (ELIXIR) and R. Neutze 538 (University of Gothenburg) for careful reading of the manuscript.Peer ReviewedPostprint (author's final draft

    Translational Database Selection and Multiplexed Sequence Capture for Up Front Filtering of Reliable Breast Cancer Biomarker Candidates

    Get PDF
    Biomarker identification is of utmost importance for the development of novel diagnostics and therapeutics. Here we make use of a translational database selection strategy, utilizing data from the Human Protein Atlas (HPA) on differentially expressed protein patterns in healthy and breast cancer tissues as a means to filter out potential biomarkers for underlying genetic causatives of the disease. DNA was isolated from ten breast cancer biopsies, and the protein coding and flanking non-coding genomic regions corresponding to the selected proteins were extracted in a multiplexed format from the samples using a single DNA sequence capture array. Deep sequencing revealed an even enrichment of the multiplexed samples and a great variation of genetic alterations in the tumors of the sampled individuals. Benefiting from the upstream filtering method, the final set of biomarker candidates could be completely verified through bidirectional Sanger sequencing, revealing a 40 percent false positive rate despite high read coverage. Of the variants encountered in translated regions, nine novel non-synonymous variations were identified and verified, two of which were present in more than one of the ten tumor samples

    Ligand binding mechanism in steroid receptors; from conserved plasticity to differential evolutionary constraints

    No full text
    Steroid receptor drugs have been available for more than half a century, but details 24 of the ligand binding mechanism has remained elusive. We solved X-ray structures of 25 the glucocorticoid and mineralocorticoid receptors to identify a conserved plasticity at 26 helix 6-7 region that extend the ligand binding pocket towards the receptor surface. 27 Since none of the endogenous ligands exploit this region, we hypothesized that it 28 constitutes an integral part of the binding event. Extensive all atom unbiased ligand 29 exit and entrance simulations corroborate a ligand binding pathway that gives the 30 observed structural plasticity a key functional role. Kinetic measurements reveal that 31 the receptor residence time correlate with structural rearrangements observed in both 32 structures and simulations. Ultimately, our findings reveal why nature has conserved 33 the capacity to open up this region and highlight how differences in the details of the 34 ligand entry process result in differential evolutionary constraints across the steroid 35 receptors.This study was supported by The European Research Council (2009-Adg25027-535 PELE) to V.G and by the SEV-2011-00067 grant of the Severo Ochoa Program. We 536 would like to acknowledge our AstraZeneca colleagues J. Hartleib, R.Unwin and 537 R.Knöll for helpful discussions. We also thank N. Blomberg (ELIXIR) and R. Neutze 538 (University of Gothenburg) for careful reading of the manuscript.Peer Reviewe

    Adenosine Kinase Deficiency Disrupts the Methionine Cycle and Causes Hypermethioninemia, Encephalopathy, and Abnormal Liver Function

    Get PDF
    Four inborn errors of metabolism (IEMs) are known to cause hypermethioninemia by directly interfering with the methionine cycle. Hypermethioninemia is occasionally discovered incidentally, but it is often disregarded as an unspecific finding, particularly if liver disease is involved. In many individuals the hypermethioninemia resolves without further deterioration, but it can also represent an early sign of a severe, progressive neurodevelopmental disorder. Further investigation of unclear hypermethioninemia is therefore important. We studied two siblings affected by severe developmental delay and liver dysfunction. Biochemical analysis revealed increased plasma levels of methionine, S-adenosylmethionine (AdoMet), and S-adenosylhomocysteine (AdoHcy) but normal or mildly elevated homocysteine (Hcy) levels, indicating a block in the methionine cycle. We excluded S-adenosylhomocysteine hydrolase (SAHH) deficiency, which causes a similar biochemical phenotype, by using genetic and biochemical techniques and hypothesized that there was a functional block in the SAHH enzyme as a result of a recessive mutation in a different gene. Using exome sequencing, we identified a homozygous c.902C>A (p.Ala301Glu) missense mutation in the adenosine kinase gene (ADK), the function of which fits perfectly with this hypothesis. Increased urinary adenosine excretion confirmed ADK deficiency in the siblings. Four additional individuals from two unrelated families with a similar presentation were identified and shown to have a homozygous c.653A>C (p.Asp218Ala) and c.38G>A (p.Gly13Glu) mutation, respectively, in the same gene. All three missense mutations were deleterious, as shown by activity measurements on recombinant enzymes. ADK deficiency is a previously undescribed, severe IEM shedding light on a functional link between the methionine cycle and adenosine metabolism
    corecore