66 research outputs found

    Identification and Analysis of Young Star Cluster Candidates in M31

    Get PDF
    We present a method for finding clusters of young stars in M31 using broadband WFPC2 data from the HST data archive. Applying our identification method to 13 WFPC2 fields, covering an area of ~60 arcmin^2, has revealed 79 new candidate young star clusters in these portions of the M31 disk. Most of these clusters are small (~<5 pc) young (~10-200 Myr) star groups located within large OB associations. We have estimated the reddening values and the ages of each candidate individually by fitting isochrones to the stellar photometry. We provide a catalog of the candidates including rough approximations of their reddenings and ages. We also look for patterns of cluster formation with galactocentric distance, but our rough estimates are not precise enough to reveal any clear patterns.Comment: 32 pages, 9 figures, 5 tables, accepted to Ap

    WFPC2 Observations of Massive and Compact Young Star Clusters in M31

    Get PDF
    We present color magnitude diagrams of four blue massive and compact star clusters in M31: G38, G44, G94, and G293. The diagrams of the four clusters reveal a well-populated upper main sequence and various numbers of supergiants. The U-B and B-V colors of the upper main sequence stars are used to determine reddening estimates of the different lines of sight in the M31 disk. Reddening values range from E(B-V) = 0.20 +/- 0.10 to 0.31 +/- 0.11. We statistically remove field stars on the basis of completeness, magnitude and color. Isochrone fits to the field-subtracted, reddening-corrected diagrams yield age estimates ranging from 63 +/- 15 Myr to 160 +/- 60 Myr. Implications for the recent evolution of the disk near NGC 206 are discussed.Comment: 17 pages, Latex, ApJ, in Pres

    X-ray/Optical/Radio Observations of a Resolved Supernova Remnant in NGC 6822

    Full text link
    The supernova remnant (SNR), Ho 12, in the center of the dwarf irregular galaxy NGC 6822 was previously observed at X-ray, optical, and radio wavelengths. By using archival Chandra and ground-based optical data, we found that the SNR is spatially resolved in X-rays and optical. In addition, we obtained a ~5" resolution radio image of the SNR. These observations provide the highest spatial resolution imaging of an X-ray/optical/radio SNR in that galaxy to date. The multi-wavelength morphology, X-ray spectrum and variability, and narrow-band optical imagings are consistent with a SNR. The SNR is a shell-shaped object with a diameter of about 10" (24 pc). The morphology of the SNR is consistent across the wavelengths while the Chandra spectrum can be well fitted with a nonequilibrium ionization model with an electron temperature of 2.8 keV and a 0.3-7 keV luminosity of 1.6e37 erg/s. The age of the SNR is estimated to be 1700-5800 years.Comment: 6 pages, 3 figures, accepted for publication in the Astronomical Journa

    Supervoid Origin of the Cold Spot in the Cosmic Microwave Background

    Get PDF
    We use a WISE-2MASS-Pan-STARRS1 galaxy catalog to search for a supervoid in the direction of the Cosmic Microwave Background Cold Spot. We obtain photometric redshifts using our multicolor data set to create a tomographic map of the galaxy distribution. The radial density profile centred on the Cold Spot shows a large low density region, extending over 10's of degrees. Motivated by previous Cosmic Microwave Background results, we test for underdensities within two angular radii, 5∘5^\circ, and 15∘15^\circ. Our data, combined with an earlier measurement by Granett et al 2010, are consistent with a large Rvoid=(192±15)h−1MpcR_{\rm void}=(192 \pm 15)h^{-1} Mpc (2σ)(2\sigma) supervoid with ή≃−0.13±0.03\delta \simeq -0.13 \pm 0.03 centered at z=0.22±0.01z=0.22\pm0.01. Such a supervoid, constituting a ∌3.5σ\sim3.5 \sigma fluctuation in the ΛCDM\Lambda CDM model, is a plausible cause for the Cold Spot.Comment: 4 pages, 2 figures, Proceedings of IAU 306 Symposium: Statistical Challenges in 21st Century Cosmolog

    Two New X-ray/Optical/Radio Supernova Remnants in M31

    Full text link
    We compare a deep (37 ks) Chandra ACIS-S image of the M31 bulge to Local Group Survey narrow-band optical data and Very Large Array (VLA) radio data of the same region. Our precisely registered images reveal two new optical shells with X-ray counterparts. These shells have sizes, [S II]/H-alpha flux ratios, and X-ray spectral properties typical of supernova remnants (SNRs) with ages of 9−4+3^{+3}_{-4} and 17−9+6^{+6}_{-9} kyr. Analysis of complementary VLA data reveals the radio counterparts, further confirming that they are SNRs. We discuss and compare the properties and morphologies of these SNRs at the different wavelengths.Comment: 18 pages, 5 figures, accepted for publication in Ap

    A Synoptic X-ray Study of M31 with the Chandra-HRC

    Full text link
    We have obtained 17 epochs of Chandra High Resolution Camera (HRC) snapshot images, each covering most of the M31 disk. The data cover a total baseline of 2.5 years and contain a mean effective exposure of 17 ks. We have measured the mean fluxes and long-term lightcurves for 166 objects detected in these data. At least 25% of the sources show significant variability. The cumulative luminosity function (CLF) of the disk sources is well-fit by a power-law with a slope comparable to those observed in typical elliptical galaxies. The CLF of the bulge is a broken power law similar to measurements made by previous surveys. We note several sources in the southwestern disk with L_X > 10^{37} erg/s . We cross-correlate all of our sources with published optical and radio catalogs, as well as new optical data, finding counterpart candidates for 55 sources. In addition, 17 sources are likely X-ray transients. We analyze follow-up HST WFPC2 data of two X-ray transients, finding F336W (U-band equivalent) counterparts. In both cases, the counterparts are variable. In one case, the optical counterpart is transient with F336W = 22.3 +/- 0.1 mag. The X-ray and optical properties of this object are consistent with a ~10 solar mass black hole X-ray nova with an orbital period of ~20 days. In the other case, the optical counterpart varies between F336W = 20.82 +/- 0.06 mag and F336W = 21.11 +/- 0.02 mag. Ground-based and HST observations show this object is bright (V = 18.8 +/- 0.1) and slightly extended. Finally, the frequency of bright X-ray transients in the M31 bulge suggests that the ratio of neutron star to black hole primaries in low-mass X-ray binaries (NS/BH) is ~1.Comment: 68 pages (27 text), 8 tables, 16 figures, 1 appendix, accepted by ApJ; accepted version contains reorganized text, new tables and figures, and updated result
    • 

    corecore