207 research outputs found

    Some aspects of man-made contamination on ULF measurements

    Get PDF
    An analysis of the man made contamination on ULF measurements in highly populated areas has been conducted at several suitably chosen sites in Western Europe. The experimental results show common characteristics at different stations with clear evidence for an additional working day contamination with respect to weekends. These effects more clearly emerge in the vertical component that is less influenced by natural signals. A similar analysis conducted at Terra Nova Bay does not reveal any clear evidence for man made disturbances on Antarctic measurements.<br><br> <b>Key words.</b> (Magnetospheric physics, instruments and techniques; Solar wind-magnetosphere interaction) (Geomagnetism and paleomagnetism time variations, diurnal to secular

    Magnetosheath High-Speed Jets: Internal Structure and InteractionWith Ambient Plasma

    Get PDF
    National Aeronautics and Space Administration (NASA). Grant Number: NNG04EB99C; Österreichische Forschungsförderungsgesellschaft (FFG); Austrian Academy of Sciences and the Austrian Space Applications Programme. Grant Number: FFG/ASAP-844377; NASA. Grant Numbers: NNX17AI45G, NAS5-02099; Austrian Science Fund (FWF). Grant Number: P 28764-N2

    How climate, topography, soils, herbivores, and fire control forest–grassland coexistence in the Eurasian forest-steppe

    Get PDF
    Recent advances in ecology and biogeography demonstrate the importance of fire and large herbivores - and challenge the primacy of climate - to our understanding of the distribution, stability, and antiquity of forests and grasslands. Among grassland ecologists, particularly those working in savannas of the seasonally dry tropics, an emerging fire-herbivore paradigm is generally accepted to explain grass dominance in climates and on soils that would otherwise permit development of closed-canopy forests. By contrast, adherents of the climate-soil paradigm, particularly foresters working in the humid tropics or temperate latitudes, tend to view fire and herbivores as disturbances, often human-caused, which damage forests and reset succession. Towards integration of these two paradigms, we developed a series of conceptual models to explain the existence of an extensive temperate forest-grassland mosaic that occurs within a 4.7 million km(2) belt spanning from central Europe through eastern Asia. The Eurasian forest-steppe is reminiscent of many regions globally where forests and grasslands occur side-by-side with stark boundaries. Our conceptual models illustrate that if mean climate was the only factor, forests should dominate in humid continental regions and grasslands should prevail in semi-arid regions, but that extensive mosaics would not occur. By contrast, conceptual models that also integrate climate variability, soils, topography, herbivores, and fire depict how these factors collectively expand suitable conditions for forests and grasslands, such that grasslands may occur in more humid regions and forests in more arid regions than predicted by mean climate alone. Furthermore, boundaries between forests and grasslands are reinforced by vegetation-fire, vegetation-herbivore, and vegetation-microclimate feedbacks, which limit tree establishment in grasslands and promote tree survival in forests. Such feedbacks suggest that forests and grasslands of the Eurasian forest-steppe are governed by ecological dynamics that are similar to those hypothesised to maintain boundaries between tropical forests and savannas. Unfortunately, the grasslands of the Eurasian forest-steppe are sometimes misinterpreted as deforested or otherwise degraded vegetation. In fact, the grasslands of this region provide valuable ecosystem services, support a high diversity of plants and animals, and offer critical habitat for endangered large herbivores. We suggest that a better understanding of the fundamental ecological controls that permit forest-grassland coexistence could help us prioritise conservation and restoration of the Eurasian forest-steppe for biodiversity, climate adaptation, and pastoral livelihoods. Currently, these goals are being undermined by tree-planting campaigns that view the open grasslands as opportunities for afforestation. Improved understanding of the interactive roles of climate variability, soils, topography, fire, and herbivores will help scientists and policymakers recognise the antiquity of the grasslands of the Eurasian forest-steppe

    Multi-point ground-based ULF magnetic field observations in Europe during seismic active periods in 2004 and 2005

    Get PDF
    We present the results of ground-based Ultra Low Frequency (ULF) magnetic field measurements observed from June to August 2004 during the Bovec earthquake on 12 July 2004. Further we give information about the seismic activity in the local observatory region for an extended time span 2004 and 2005. ULF magnetic field data are provided by the South European Geomagnetic Array (SEGMA) where the experience and heritage from the CHInese MAGnetometer (CHIMAG) fluxgate magnetometer comes to application. The intensities of the horizontal <I>H</I> and vertical <I>Z</I> magnetic field and the polarization ratio <I>R</I> of the vertical and horizontal magnetic field intensity are analyzed taking into consideration three SEGMA observatories located at different close distances and directions from the earthquake epicenter. We observed a significant increase of high polarization ratios during strong seismic activity at the observatory nearest to the Bovec earthquake epicenter. Apart from indirect ionospheric effects electromagnetic noise could be emitted in the lithosphere due to tectonic effects in the earthquake focus region causing anomalies of the vertical magnetic field intensity. Assuming that the measured vertical magnetic field intensities are of lithospheric origin, we roughly estimate the amplitude of electromagnetic noise in the Earths crust considering an average electrical conductivity of <σ>=10<sup>−3</sup> S/m and a certain distance of the observatory to the earthquake epicenter

    The 6 April 2009 earthquake at L'Aquila: a preliminary analysis of magnetic field measurements

    Get PDF
    Several investigations reported the possible identification of anomalous geomagnetic field signals prior to earthquake occurrence. In the ULF frequency range, candidates for precursory signatures have been proposed in the increase in the noise background and polarization parameter (i.e. the ratio between the amplitude/power of the vertical component and that one of the horizontal component), in the changing characteristics of the slope of the power spectrum and fractal dimension, in the possible occurrence of short duration pulses. We conducted, with conventional techniques of data processing, a preliminary analysis of the magnetic field observations performed at L'Aquila during three months preceding the 6 April 2009 earthquake, focusing attention on the possible occurrence of features similar to those identified in previous events. Within the limits of this analysis, we do not find compelling evidence for any of the features which have been proposed as earthquake precursors: indeed, most of aspects of our observations (which, in some cases, appear consistent with previous findings) might be interpreted in terms of the general magnetospheric conditions and/or of different sources

    Spatial distributions of electromagnetic field variations and injection regions during the 20 November 2007 sawtooth event

    Get PDF
    We report multi-spacecraft and ground-based observations of a "sawtooth" event on 20 November 2007. For this event, data from three THEMIS, two GOES, and four LANL spacecraft are available as well as those from extensively distributed ground magnetometers and all-sky imagers. In the present paper we focus on the spatial extents of the electromagnetic and particle signatures of the first "tooth". In this event, auroral images and ground magnetic bays showed two activations: a pseudo onset and a major onset (we use the term pseudo onset since the former auroral brightening did not significantly expand poleward). Ground magnetic bay observations indicate that the substorm current wedge (SCW) developed after the major onset in an azimuthally wide region of ~14–3 h MLT. Similarly, broad magnetic bay distribution was observed also for the pseudo onset prior to the major onset. Furthermore, around the pseudo onset, magnetic dipolarisations were observed from 0.5 to 5 h MLT. These observations illustrate that, during sawtooth events, activities following not only the major onset but also the pseudo onset can extend more widely than those during usual substorms. Remarkable electromagnetic field fluctuations embedded in the dipolarisation trend were seen at 0.5 and 2.5 h MLT. In particular, comprehensive plasma and field data from THEMIS showed the presence of a long-excited weak magnetosonic wave and an impulsive large-amplitude Alfvén wave with an earthward Poynting flux at around the eastward edge of the SCW; the latter was sufficiently strong for powering aurora (140 mW/m<sup>2</sup> when mapped to the ionosphere). These two activations of the electromagnetic wave were identified, corresponding to the pseudo onset and the major onset. On the other hand, the dipolarisation at geosynchronous 0 h MLT was observed only after the major onset, despite its closer location to the centre of the auroral activity in terms of the MLT; this indicates that the inner radial limit of the dipolarisation region at the pseudo onset was tailward of geosynchronous altitude at 0 h MLT. The outer radial limit of the electron injection region was also found at ~10 <I>R<sub>E</sub></I> by conjunction measurements with THEMIS satellites. These radial distributions are not significantly different to those expected for usual substorms

    ULF fluctuations of the geomagnetic field and ionospheric sounding measurements at low latitudes during the first CAWSES campaign

    Get PDF
    We present an analysis of ULF geomagnetic field fluctuations at low latitudes during the first CAWSES campaign (29 March–3 April 2004). During the whole campaign, mainly in the prenoon sector, a moderate Pc3-4 pulsation activity is observed, clearly related to interplanetary upstream waves. On 3 April, in correspondence to the Earth’s arrival of a coronal mass ejection, two SIs are observed whose waveforms are indicative of a contribution of the high-latitude ionospheric currents to the low-latitude ground field. During the following geomagnetic storm, low frequency (Pc5) waves are observed at discrete frequencies. Their correspondence with the same frequencies detected in the radial components of the interplanetary magnetic field and solar wind speed suggests that Alfv´enic solar wind fluctuations may act as direct drivers of magnetospheric fluctuations. A cross-phase analysis, using different pairs of stations, is also presented for identifying field line resonant frequencies and monitoring changes in plasmaspheric mass density. Lastly, an analysis of ionospheric vertical soundings, measured at the Rome ionosonde station (41.8 N, 12.5 E), and vertical TEC measurements deduced from GPS signals within an European network shows the relation between the ULF resonances in the inner magnetosphere and thermal plasma density variations during geomagnetically quiet conditions, in contrast to various storm phases at the end of the CAWSES campaign
    corecore