5,400 research outputs found

    A Dynamical Study of the Non-Star Forming Translucent Molecular Cloud MBM16: Evidence for Shear Driven Turbulence in the Interstellar Medium

    Get PDF
    We present the results of a velocity correlation study of the high latitude cloud MBM16 using a fully sampled 12^{12}CO map, supplemented by new 13^{13}CO data. We find a correlation length of 0.4 pc. This is similar in size to the formaldehyde clumps described in our previous study. We associate this correlated motion with coherent structures within the turbulent flow. Such structures are generated by free shear flows. Their presence in this non-star forming cloud indicates that kinetic energy is being supplied to the internal turbulence by an external shear flow. Such large scale driving over long times is a possible solution to the dissipation problem for molecular cloud turbulence.Comment: Uses AAS aasms4.sty macros. Accepted for publication in Ap

    Approximated integrability of the Dicke model

    Full text link
    A very approximate second integral of motion of the Dicke model is identified within a broad region above the ground state, and for a wide range of values of the external parameters. This second integral, obtained from a Born Oppenheimer approximation, classifies the whole regular part of the spectrum in bands labelled by its corresponding eigenvalues. Results obtained from this approximation are compared with exact numerical diagonalization for finite systems in the superradiant phase, obtaining a remarkable accord. The region of validity of our approach in the parameter space, which includes the resonant case, is unveiled. The energy range of validity goes from the ground state up to a certain upper energy where chaos sets in, and extends far beyond the range of applicability of a simple harmonic approximation around the minimal energy configuration. The upper energy validity limit increases for larger values of the coupling constant and the ratio between the level splitting and the frequency of the field. These results show that the Dicke model behaves like a two-degree of freedom integrable model for a wide range of energies and values of the external parameters.Comment: 6 pages, 3 figures. Second version with added text, references and some new figure

    S-mixing and quantum tunneling of the magnetization in molecular nanomagnets

    Full text link
    The role of SS-mixing in the quantum tunneling of the magnetization in nanomagnets has been investigated. We show that the effect on the tunneling frequency is huge and that the discrepancy (more than 3 orders of magnitude in the tunneling frequency) between spectroscopic and relaxation measurements in Fe8_8 can be resolved if SS-mixing is taken into account.Comment: REVTEX, 10 pages, 3 jpg figures, to appear in PR

    Parameterized thermal macromodeling for fast and effective design of electronic components and systems

    Get PDF
    We present a parameterized macromodeling approach to perform fast and effective dynamic thermal simulations of electronic components and systems where key design parameters vary. A decomposition of the frequency-domain data samples of the thermal impedance matrix is proposed to improve the accuracy of the model and reduce the number of the computationally costly thermal simulations needed to build the macromodel. The methodology is successfully applied to analyze the impact of layout variations on the dynamic thermal behavior of a state-of-the-art 8-finger AlGaN/GaN HEMT grown on a SiC substrate

    Enhancement of rare-earth--transition-metal exchange interaction in Pr2_{2}Fe17_{17} probed by inelastic neutron scattering

    Full text link
    The fundamental magnetic interactions of Pr2_{2}Fe17_{17} are studied by inelastic neutron scattering and anisotropy field measurements. Data analysis confirms the presence of three magnetically inequivalent sites, and reveals an exceptionally large value of the exchange field. The unexpected importance of JJ-mixing effects in the description of the ground-state properties of Pr2_{2}Fe17_{17} is evidenced, and possible applications of related compounds are envisaged.Comment: 4 RevTeX pages, 4 EPS figures. Accepted for publication by Appl. Phys. Lett. (will be found at http://apl.aip.org

    Suppression of Rayleigh-Taylor turbulence by time-periodic acceleration

    Get PDF
    The dynamics of Rayleigh-Taylor turbulence convection in presence of an alternating, time periodic acceleration is studied by means of extensive direct numerical simulations of the Boussinesq equations. Within this framework, we discover a new mechanism of relaminarization of turbulence: The alternating acceleration, which initially produces a growing turbulent mixing layer, at longer times suppresses turbulent fluctuation and drives the system toward an asymptotic stationary configuration. Dimensional arguments and linear stability theory are used to predict the width of the mixing layer in the asymptotic state as a function of the period of the acceleration. Our results provide an example of simple control and suppression of turbulent convection with potential applications in different fields.Comment: 5 pages, 5 figure
    corecore