6 research outputs found

    Impact of age on NIS2+™ and other non-invasive blood tests for the evaluation of liver disease and detection of at-risk MASH

    Get PDF
    \ua9 2024 The Author(s)Background & Aims: Robust performance of non-invasive tests (NITs) across ages is critical to assess liver disease among patients with metabolic dysfunction-associated liver disease (MASLD). We evaluated the impact of age on the performance of NIS2+™ vs. other NITs. Methods: An analysis cohort (N = 1,926) with biopsy-proven MASLD was selected among individuals screened for the phase III RESOLVE-IT clinical trial and divided into ≤45, 46–55, 56–64, and ≥65 years groups. To avoid potential confounding effects, a well-balanced cohort (n = 708; n = 177/age group) was obtained by applying a propensity score-matching algorithm to the analysis cohort. Baseline values of biomarkers and NITs were compared across age groups using one-way ANOVA, and the impact of age and histology were compared through three-way ANOVA. The impact of age on NIT performance for the detection of at-risk metabolic dysfunction-associated steatohepatitis (MASH; MASLD activity score [MAS] ≥4 and fibrosis stage [F] ≥2) was also evaluated. Results: Age did not affect the distributions of NIS2+™ and APRI (aspartate aminotransferase-to-platelet ratio index), but significantly (p <0.0001) impacted those of NFS (NAFLD fibrosis score), FIB-4 (Fibrosis-4 index), and Enhanced Liver Fibrosis (ELF™) score. NIS2+™ was the only NIT on which fibrosis and MAS exerted a moderate to large effect. While the impact of fibrosis on APRI was moderate, that of MAS was low. The impact of age on FIB-4 and NFS was larger than that of fibrosis. NIS2+™ exhibited the highest AUROC values for detecting at-risk MASH across age groups, with stable performances irrespective of cut-offs. Conclusions: NIS2+™ was not significantly impacted by age and was sensitive to both fibrosis and MAS grade, demonstrating a robust performance to rule in/out at-risk MASH with fixed cut-offs. Impact and Implications: While metabolic dysfunction-associated steatotic liver disease (MASLD) can affect individuals of all ages, patient age could represent an important confounding factor when interpreting non-invasive test (NIT) results, highlighting the need for reliable and efficient NITs that are not impacted by age and that could be interpreted with fixed cut-offs, irrespective of patient age. We report the impact of age on different well-established NITs – among those tested, only two panels, NIS2+™ and APRI, were not impacted by age and can be used and interpreted independently of patient age. NIS2+™ was also sensitive to both fibrosis and MAS, further confirming its efficiency for the detection of the composite endpoint of at-risk MASH and its potential as a valuable candidate for large-scale implementation in clinical practice and clinical trials

    NIS2+TM as a screening tool to optimize patient selection in metabolic dysfunction-associated steatohepatitis clinical trials

    No full text
    \ua9 2023 The AuthorsBackground & Aims: Strategies to reduce liver biopsy (LB) screen failures through better patient selection are needed for clinical trials. Standard fibrosis biomarkers were not derived to detect “at-risk” metabolic dysfunction-associated steatohepatitis (MASH; MASH with metabolic dysfunction-associated steatotic liver disease score ≥4 and fibrosis stage ≥2). We compared the performance of screening pathways that incorporate NIS2+™, an optimized version of the blood-based NIS4\uae technology designed to identify at-risk MASH, with those incorporating fibrosis (FIB)-4 within the RESOLVE-IT clinical trial (NCT02704403), aiming for optimized selection of patients for LB. Methods: A retrospective simulation analysis was conducted in the RESOLVE-IT screening pathway (RSP) cohort. LB failure rate (LBFR), number of patients needed to screen, and overall cost estimations of different pathways were calculated for a range of NIS2+™ and FIB-4 cut-offs and compared with those of the RSP, which relied on investigators’ local practices. An analysis of potential recruitment bias based on histology, sex, age, or comorbidities was performed. Results: The analysis cohort included 1,929 patients, 765 (40%) with at-risk MASH. The NIS2+™ pathway resulted in a significantly lower LBFR (39%) compared with the FIB-4 pathway (58%) or the RSP (60%) when using cost-optimized cut-offs (NIS2+™, 0.53; FIB-4, 0.58). For every 1,000 inclusions, NIS2+™ significantly reduced unnecessary LBs (632 vs. 1,522; -58%) and screening costs (US12.7millionvs.US12.7 million vs. US15.0 million) vs. the RSP, while the number of patients needed to screen increased moderately (3,220 to 4,033). NIS2+™ alone is better than FIB-4 alone or combined with FIB-4. Conclusions: This analysis demonstrated that patient selection for LB using NIS2+™ significantly reduced unnecessary biopsies and screening costs, which could greatly improve the feasibility of MASH clinical trials. Impact and implications: Simple and accurate non-invasive strategies to optimize the selection of patients who should be referred for liver biopsy for inclusion in MASH clinical trials is critical to reduce the high liver biopsy failure rates. While the use of the Fibrosis-4 index alone did not lead to a significant improvement of the screening process, selecting patients using NIS2+™, a recently developed optimization of the NIS4\uae technology for the detection of at-risk MASH, showed improved performance by simultaneously reducing liver biopsy failure rates and the overall cost of the trial, while maintaining the number of patients needed to screen at a manageable level and not generating any bias in included patients’ characteristics. This makes NIS2+™ an accurate and reliable screening tool that could improve the recruitment of patients in future MASH clinical trials, and would lead to increased patient comfort and security, ensuring timely and cost-efficient trial completion
    corecore