181 research outputs found

    Code formula for the fundamental period of RC precast buildings

    Get PDF
    Recent seismic events in Europe, as L’Aquila earthquake (2009) and Emilia earthquake (2012), seriously hit the precast concrete structures. Among the others, one of the most widespread damage is the collapse of the cladding panels system. The high vulnerability of precast panels connections motivate the need of an extended study on the behavior of precast panels and on their interaction with the structure. The first step of this study must be the investigation of the dynamic behavior (in particular, the vibration periods) of one-story precast structures with and without cladding panels. In this paper a parametric study is performed in order to evaluate the first period of one-story precast buildings, without and with the cladding system. In particular, the aim of the work is to compare the results of the model with cladding panels to the dynamic properties of the bare model, in order to evaluate the cladding system influence on the stiffness and on the first period of this structural typology. Moreover, the results are compared with the code relationships that predict the first period of structures in linear static analysis

    A Semi-Active Control Technique through MR Fluid Dampers for Seismic Protection of Single-Story RC Precast Buildings

    Get PDF
    The work proposes an innovative solution for the reduction of seismic effects on precast reinforced concrete (RC) structures. It is a semi-active control system based on the use of magnetorheological dampers. The special base restraint is remotely and automatically controlled according to a control algorithm, which modifies the dissipative capability of the structure as a function of an instantaneous dynamic response. The aim is that of reducing the base bending moment demand without a significant increase in the top displacement response. A procedure for the optimal calibration of the parameters involved in the control logic is also proposed. Non-linear modelling of a case-study structure has been performed in the OpenSees environment, also involving the specific detailing of a novel variable base restraint. Non-linear time history analyses against natural earthquakes allowed testing of the optimization procedure for the control algorithm parameters, finally the capability of the proposed technology to mitigate seismic risk of new or existing one-story precast RC structures is highlighted

    Influence of cladding panels on dynamic behaviour of one-storey precast building

    Get PDF
    Recent Italian seismic events, as L’Aquila earthquake (2009) and Emilia earthquake (2012), demonstrated the deficiency of the actual design approach of the cladding panels system in precast buildings. Collapse of these precast panels is observed due to the connection system failure. Although cladding panels are designed as non-structural elements according to the actual code approach, i.e. no interaction with the structure is considered, a seismic excitations could make the panels collaborating with the resistant system. In this paper the influence of vertical cladding panels on seismic behavior of one-story precast concrete buildings is investigated. A parametric study is carried out to judge the influence of the cladding presence on the dynamic characteristics of precast structures. At this purpose, modal analyses are performed on both bare and infilled models. The parametric study shows a high influence of the panels on the first period of the structure, as well as the inadequacy of the code relationships for the evaluation of the natural period for such typology of structure. More suitable relations are proposed in order to evaluate the seismic demand of one story precast buildings both in the case of bare and infilled system

    Influence of infill panels on the seismic behaviour of a r/c frame designed according to modern buildings codes

    Get PDF
    It has been broadly shown that presence of infill panels as closing elements of R/C frame buildings has a significant influence on global structural behaviour. Nevertheless, infill elements are not usually considered in the modelling process during the design phase. The present work investigates the effect of infill masonry walls on the dynamic characteristics of a R/C MRF building, designed according to a modern seismic building code, and on its seismic performance at different levels of seismic intensity. An analytical investigation is carried out through eigenvalue analysis on both bare and infilled structure, in order to calibrate the elastic properties of the concrete and infills according to in situ tests; nonlinear static analyses are also performed to characterize the inelastic behaviour. The infill system considerably affects the behaviour of the examined structure, in agreement with earlier studies related to very simple and usually ¿unrealistic¿ structures. This result becomes more reliable due to the consistency between the results of the eigenvalue analysis and the experimental dynamic data

    Seismic performance of single-story precast 1 buildings: Effect of cladding panels

    Get PDF
    In reinforced concrete industrial precast structures one of the most common seismic damage is the collapse of the cladding panels because of the failure of the panel-to-structure connections. This damage is caused by the interaction between the panels and the structures, which is usually neglected in the design approach. The present study aims at investigating this interaction. Nonlinear dynamic analyses are performed on several structural models in order to take into account both the panel-to-structure interaction and the roof diaphragm. According to the analyses results, if the current European single-story precast buildings stock is considered, panels stiffness significantly influences the overall structural behavior under seismic actions and the failure of the connections occurs at very low intensity values. The progressive collapse of the panels is also simulated in order to evaluate the redistribution of seismic demand in the columns during the earthquake. In the final part, fragility curves are evaluated in order to generalize the dynamic analyses results

    Out-of-plane seismic performance of plasterboard partition walls via quasi-static tests

    Get PDF
    Internal partitions, as many nonstructural components, should be subjected to a careful and rational seismic design, as is done for structural elements. A quasi-static test campaign aimed at the evaluation of the out-of-plane seismic performance of Siniat plasterboard internal partitions with steel studs was conducted according to FEMA 461 testing protocol. Four tall, i.e. 5 m high, specimens were selected from the range of internal partitions developed in Europe by Siniat, a leading supplier of plasterboard components in Europe. Under the specified testing protocol, a significant nonlinear pinched behaviour of the tested specimen was observed. The pinched behaviour was caused by the damage in the screwed connections, whose cyclic behaviour was strongly degrading. Both stiffness and strength of the specimens are significantly influenced by the board typology and the amount of screwed connections. Finally, it was concluded that Eurocodes significantly underestimate the resisting bending moment of the tested specimens
    corecore