126 research outputs found

    Skin-Specific Expression of ank-393, a Novel Ankyrin-3 Splice Variant

    Get PDF
    Ankyrins represent a protein family whose members are associated with membrane proteins and the actin cytoskeleton. The principal ankyrin domain structure comprises an amino-terminal membrane-binding, a spectrin-binding, and a regulatory domain, and can be modulated by alternative splicing. In order to investigate the role of ankyrin-3 in skin, we have isolated three complete ankyrin-3 cDNA clones of 5.8 kb, 5.2 kb, and 2.5 kb by reverse transcription–polymerase chain reaction of mouse skin RNA. DNA sequencing confirmed the isolated clones to be splice variants of ankyrin-3. Of these, the smallest cDNA represents a novel ankyrin named ankyrin-393. Surprisingly, this novel ankyrin subtype lacks not only all ankyrin repeats, but also the first 75 amino acids of the spectrin-binding domain. Immuno-fluorescence analysis of mouse skin showed that ankyrin-3 is expressed in all living layers of mouse epidermis. Here, it predominates along the basal and lateral membranes of the basal layer in addition to an even cytoplasmic distribution. In primary mouse keratinocytes grown at elevated Ca2+ levels, ankyrin-393 was localized along the plasma membrane and throughout the cell in a Golgi-like fashion. Depending on fixation conditions, nuclear staining became apparent in many cells. In agreement with previous data, northern blotting revealed a widespread distribution of the two larger ankyrin splice variants. In contrast, the mRNA coding for ankyrin-393 was restricted to mouse skin. Reverse transcription–polymerase chain reaction of mouse skin RNA strongly suggested additional ankyrin isoforms in skin. Our data on ankyrin-393, which lacks a part of the spectrin-binding domain that regulates the affinity to spectrin, suggests a new function for this member of the ankyrin family

    Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia

    Get PDF
    Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type–specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis–independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function

    Keratins Stabilize Hemidesmosomes through Regulation of β4-Integrin Turnover

    Get PDF
    Epidermal integrity and wound healing depend on remodeling of cell-matrix contacts including hemidesmosomes. Mutations in β4-integrin and plectin lead to severe epidermolysis bullosa (EB). Whether mutations in keratins K5 or K14, which cause EB simplex, also compromise cell-matrix adhesion through altering hemidesmosomal components is not well investigated. In particular, the dependence of β4-integrin endocytosis and turnover on keratins remains incompletely understood. Here, we show that the absence of keratins causes loss of plectin-β4-integrin interaction and elevated β4-integrin phosphorylation at Ser1354 and Ser1362. This triggered a caveolin-dependent endocytosis of β4-integrin but not of other integrins through Rab5 and Rab11 compartments in keratinocytes. Expressing a phospho–deficient β4-integrin mutant reduces β4-integrin endocytosis and rescues plectin localization in keratin–free cells. β4-integrin phosphorylation in the absence of keratins resulted from elevated Erk1/2 activity downstream of increased EGFR and PKCα signaling. Further, increased Erk1/2 phosphorylation and altered plectin localization occur in keratin–deficient mouse epidermis in vivo. Strikingly, expression of the K14-R125P EBS mutant also resulted in plectin mislocalization and elevated β4-integrin turnover, suggesting disease relevance. Our data underscore a major role of keratins in controlling β4-integrin endocytosis involving a plectin-Erk1/2-dependent mechanism relevant for epidermal differentiation and pathogenesis

    New consensus nomenclature for mammalian keratins

    Get PDF
    Keratins are intermediate filament–forming proteins that provide mechanical support and fulfill a variety of additional functions in epithelial cells. In 1982, a nomenclature was devised to name the keratin proteins that were known at that point. The systematic sequencing of the human genome in recent years uncovered the existence of several novel keratin genes and their encoded proteins. Their naming could not be adequately handled in the context of the original system. We propose a new consensus nomenclature for keratin genes and proteins that relies upon and extends the 1982 system and adheres to the guidelines issued by the Human and Mouse Genome Nomenclature Committees. This revised nomenclature accommodates functional genes and pseudogenes, and although designed specifically for the full complement of human keratins, it offers the flexibility needed to incorporate additional keratins from other mammalian species

    Комплекс геофизических исследований скважин для контроля технического состояния скважин и определения эксплуатационных характеристик пласта-коллектора на Медвежьем месторождении (ЯНАО)

    Get PDF
    Объектом исследования является: Медвежье нефтегазоконденсатное месторождение. Цель работы – Проектирование комплекса промыслово-геофизических исследований для оценки технического состояния скважины после капитального ремонта. В процессе исследования проводился: анализ промыслово-геофизических исследований. В результате исследования: был запроектирован комплекс для изучения технического состояния скважины. Область применения: результаты ВКР могут использоваться на нефтегазовых месторождениях с целью изучения технического состояния.The object of research is: Medvezhye oil and gas condensate field. The purpose of the work is to design a complex of field-geophysical surveys for assessing the technical condition of a well after major repairs. In the course of the study, the following was carried out: analysis of field geophysical studies. As a result of the study: a complex was designed to study the technical condition of the well. Field of application: the results of the research and development work can be used in oil and gas fields in order to study the technical condition of wells. Significance of the w

    Proteomic Shifts in Embryonic Stem Cells with Gene Dose Modifications Suggest the Presence of Balancer Proteins in Protein Regulatory Networks

    Get PDF
    Large numbers of protein expression changes are usually observed in mouse models for neurodegenerative diseases, even when only a single gene was mutated in each case. To study the effect of gene dose alterations on the cellular proteome, we carried out a proteomic investigation on murine embryonic stem cells that either overexpressed individual genes or displayed aneuploidy over a genomic region encompassing 14 genes. The number of variant proteins detected per cell line ranged between 70 and 110, and did not correlate with the number of modified genes. In cell lines with single gene mutations, up and down-regulated proteins were always in balance in comparison to parental cell lines regarding number as well as concentration of differentially expressed proteins. In contrast, dose alteration of 14 genes resulted in an unequal number of up and down-regulated proteins, though the balance was kept at the level of protein concentration. We propose that the observed protein changes might partially be explained by a proteomic network response. Hence, we hypothesize the existence of a class of “balancer” proteins within the proteomic network, defined as proteins that buffer or cushion a system, and thus oppose multiple system disturbances. Through database queries and resilience analysis of the protein interaction network, we found that potential balancer proteins are of high cellular abundance, possess a low number of direct interaction partners, and show great allelic variation. Moreover, balancer proteins contribute more heavily to the network entropy, and thus are of high importance in terms of system resilience. We propose that the “elasticity” of the proteomic regulatory network mediated by balancer proteins may compensate for changes that occur under diseased conditions
    corecore