75 research outputs found

    Control of systematic uncertainties in the storage ring search for an electric dipole moment by measuring the electric quadrupole moment

    Get PDF
    Measurements of electric dipole moment (EDM) for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle’s magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles’ interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy

    Study of three-nucleon dynamics in the dp breakup collisions using the Wasa detector

    Get PDF
    An experiment to investigate the ^{1}H(d,pp)n breakup reaction using a deuteron beam of 300, 340, 380 and 400 MeV and the WASA detector has been performed at the Cooler Synchrotron COSY-Jülich. As a first step, the data collected at the beam energy of 340 MeV are analysed, with a focus on the proton–proton coincidences registered in the Forward Detector. Elastically scattered deuterons are used for precise determination of the luminosity. The main steps of the analysis, including energy calibration, particle identification (PID) and efficiency studies, and their impact on the final accuracy of the result, are discussed

    Study of three-nucleon dynamics in the dp breakup collisions using the Wasa detector

    Get PDF
    An experiment to investigate the ^{1}H(d,pp)n breakup reaction using a deuteron beam of 300, 340, 380 and 400 MeV and the WASA detector has been performed at the Cooler Synchrotron COSY-Jülich. As a first step, the data collected at the beam energy of 340 MeV are analysed, with a focus on the proton–proton coincidences registered in the Forward Detector. Elastically scattered deuterons are used for precise determination of the luminosity. The main steps of the analysis, including energy calibration, particle identification (PID) and efficiency studies, and their impact on the final accuracy of the result, are discussed

    Probing three- and four-nucleon interactions with the deuteron breakup reaction

    Get PDF
    Research in the domain of few-nucleon systems concerns reactions involving a small number of nucleons in which observables can be compared directly to exact computational methods — rigorous solutions of the Faddeev equations. The investigations of such systems reveal existence of various dynamical ingredients such as the three-nucleon force, the Coulomb force or relativistic effects. A large set of the cross-section data of the ^{1}H(d,pp)n breakup reaction obtained at energy of 130 MeV was used to trace the Coulomb force effects. Comparisons of the cross-section data with the predictions using the realistic Argonne 18 potential are presented. The new set of invariants was introduced to describe the process with three nucleons in the final state

    Characterisation of components of a scintillation-fiber-based compton camera

    Get PDF
    The next awaited breakthrough in proton therapy is the inclusion of the tools for online monitoring of beam range into clinical practice. Full, three-dimensional information on the deposited dose distribution can be obtained by means of prompt gamma imaging using Compton cameras. Large gamma detection efficiency and high-rate capacity can be achieved using detectors of high granularity made of a heavy scintillator. One of the possible design options is a stack of scintillating fibers. As the overall performance of such a camera depends on the position, time and energy resolution of the fibers, we investigate those properties both experimentally in measurements with a test bench as well as via Monte Carlo simulations. The obtained results point at LYSO:Ce as the best candidate for a sensitive material of a Compton camera of the discussed type

    Comparison of various models of Monte Carlo geant 4 code in simulations of prompt gamma production

    Get PDF
    In this paper, results of simulations of the gamma-ray production in reactions with 70 MeV protons in a target of PMMA are presented. The data obtained by means of two versions of Geant 4 software, 9.3 and 10.01, have shown significant differences in the gamma-ray spectra. The comparison between the calculated spectra and the measured ones has been carried out. The tested versions do not give satisfactory agreement with the experimental result. The reason of the performed verification was the planned application of this simulation toolkit for the preparation of in vivo dosimetry based on the prompt gamma-ray measurements for the proton therapy

    Experimental investigation of the few-nucleon dynamics in deuteron-deuteron collision at 160 MeV

    Get PDF
    An experiment, with unpolarized deuteron beam of 160 MeV impinging on liquid deuterium target, was carried out using BINA detector at KVI, in Groningen, the Netherlands. Data were collected for the purpose of obtaining high precision differential cross-section for the deuteron break-up reaction. The elastic scattering data were also collected alongside for the purpose of cross-section normalization. We present here a sample of the un-normalised cross-section for the three-body final state (dddpn)\left ( dd\rightarrow dpn \right ) reaction

    Few-nucleon system dynamics studied via deuteron-deuteron collisions at 160 MeV

    Get PDF
    Four nucleon scattering at intermediate energies provides unique opportunities to study effects of the two key ingredients of the nuclear dynamics, the nucleon-nucleon P-wave (NNP-wave) and the three-nucleon force (3NF). This is possible only with systematic and precise data, in conjunction with exact theoretical calculations. Using the BINA detector at KVI Groningen, the Netherlands, a rich set of differential cross section of the 2H(d, dp)n breakup reaction at 160 MeV deuteron beam energy has been measured. Besides the three-body breakup, also cross sections of the 2H(d, 3He)n proton transfer reaction have been obtained. The data are compared to the recent calculations for the three-cluster breakup

    Three- and four-nucleon dynamics at intermediate energies

    Get PDF
    An experiment, with unpolarized deuteron beam of 160 MeV impinging on liquid hydrogen and liquid deuterium targets, was carried out using BINA detector at KVI in Groningen, the Netherlands. Data were collected for the purpose of obtaining high precision differential cross sections of break-up channels in dp and dd collisions. The elastic scattering data were also collected alongside for the purpose of cross-section normalization. A brief description of the experiment and the data analysis as well as some preliminary results are presented
    corecore