15 research outputs found

    Prospects of improving agricultural and water productivity through unmanned aerial vehicles

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are an alternative to costly and time-consuming traditional methods to improve agricultural water management and crop productivity through the acquisition, processing, and analyses of high-resolution spatial and temporal crop data at field scale. UAVs mounted with multispectral and thermal cameras facilitate the monitoring of crops throughout the crop growing cycle, allowing for timely detection and intervention in case of any anomalies. The use of UAVs in smallholder agriculture is poised to ensure food security at household level and improve agricultural water management in developing countries. This review synthesises the use of UAVs in smallholder agriculture in the smallholder agriculture sector in developing countries. The review highlights the role of UAV derived normalised difference vegetation index (NDVI) in assessing crop health, evapotranspiration, water stress and disaster risk reduction. The focus is to provide more accurate statistics on irrigated areas, crop water requirements and to improve water productivity and crop yield

    An Assessment of the Impacts of Climate Variability and Change in KwaZulu-Natal Province, South Africa

    Get PDF
    Rainfall and air temperature variability pose the greatest risk to environmental change. Past trends in rainfall and air temperature facilitate projecting future climate changes for informed policy responses. We used a combination of the normalised difference vegetation index (NDVI) and observed data from 1968 to 2017 to assess changes in rainfall, moisture stress, and air temperature variability over time on bioclimatic regions of KwaZulu-Natal (KZN) Province, South Africa. Indicators used included consecutive dry days (CDDs), consecutive wet days (CWDs), very heavy rainfall days (R20), monthly maximum daily maximum air temperature (TXx), monthly minimum daily minimum air temperature (TNn), the total number of rainfall days, and monthly air temperature averages. Trends in rainfall and moisture stress are notable in different bioclimatic regions across the province. However, these trends are diverse, in general, and spatially different across and within the bioclimatic regions. Further, related rainfall indicators do not respond in the same way as would be expected. Air temperature trends were consistent with global trends and landā€“air temperature anomalies. Although daytime air temperatures showed a positive trend, extreme air temperature events and increases are predominant in inland regions. Night-time air temperatures showed an upward trend in most stations across KZN. Local weather-and-climate related characteristics are evolving due to climatic variability and change. The study shows that changes in climatic activities are detectable at a local level from existing historical weather data; therefore, adaptation strategies should be contextualised to respond to local and area-specific challenges

    Determining wetland spatial extent and seasonal variations of the inundated area using multispectral remote sensing

    Get PDF
    Wetlands can only be well managed if their spatial location and extent are accurately documented, which presents a problem as wetland type and morphology are highly variable. Current efforts to delineate wetland extent are varied, resulting in a host of inconsistent and incomparable inventories. This study, done in the Witbank Dam Catchment in Mpumalanga Province of South Africa, explores a remote-sensing technique to delineate wetland extent and assesses the seasonal variations of the inundated area. The objective was to monitor the spatio-temporal changes of wetlands over time through remote sensing and GIS for effective wetland management. Multispectral satellite images, together with a digital elevation model (DEM), were used to delineate wetland extent. The seasonal variations of the inundated area were assessed through an analysis of monthly water indices derived from the normalised difference water index (NDWI). Landsat images and DEM were used to delineate wetland extent and MODIS images were used to assess seasonal variation of the inundated area. A time-series trend analysis on the delineated wetlands shows a declining tendency from 2000 to 2015, which could worsen in the coming few years if no remedial action is taken. Wetland area declined by 19% in the study area over the period under review. An analysis of NDWI indices on the wetland area showed that wetland inundated area is highly variable, exhibiting an increasing variability over time. An overlay of wetland area on cultivated land showed that 21% of the wetland area is subjected to cultivation which is a major contributing factor to wetland degradation

    Irrigation suitability mapping examples from Zimbabwe, Zambia, Malawi and Kenya

    No full text
    The irrigation suitability classification was achieved by using physical factors that include slope, rainfall, landuse, closeness to waterbodies (surface and groundwater) and soil characteristics for selected districts in Zimbabwe, Zambia, Malawi, and Kenya, some of the UU target countries. As cereals form the main food basket of the selected countries, and cereals are not tolerant to saline conditions, the report also provides maps showing high soil salinity areas of Makueni and Nakuru of Kenya, where soils are highly saline. However, soil salinity is insignificant in the other study districts and therefore not mapped. This report provides (a) a conceptual framework and detailed methodology for irrigation suitability mapping, including details of identified boundary maps and geospatial data, and (b) a synthesis model and maps on irrigation suitability mapping for the selected districts in the four target countries

    Mapping irrigated areas in the Limpopo Province, South Africa

    No full text
    This report summarizes the findings of a collaborative effort to map and assess irrigated areas in the Limpopo Province, South Africa. The study was conducted by the International Water Management Institute (IWMI) in collaboration with the Department of Agriculture, Forestry and Fisheries (DAFF) and the Limpopo Department of Agriculture and Rural Development (LDARD), as part of the DAFF-supported ā€˜Revitalization of irrigation in South Africaā€™ project. Based on a combination of Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, previous irrigated area mapping exercises carried out by DAFF and three-field ground truthing (GT) surveys, a total of 1.6 million hectares (Mha) of cropland were identified, with 262,000 ha actually irrigated in the 2015 winter season. The study also found that only 29% of all land equipped with center pivots was actually irrigated

    Living with floods ā€“ household perception and satellite observations in the Barotse floodplain, Zambia

    No full text
    The Barotse Floodplain, a designated Ramsar site, is home to thousands of indigenous people along with an extensive wetland ecosystem and food production system. Increasingly it is also a popular tourist destination with its annual Kuomboka festival which celebrates the relocation of the king and the Lozi people to higher ground before the onset of the ood season. This paper presents an integrated approach which cross validates and combines the oodplain residents' perceptions about recent oods with information on ood inundation levels derived from satellite observations. Local residents' surveys were conducted to assess farmersā€™ perception on the ooding patterns and the impact on their livelihoods. Further, a series of ood inundation maps from 1989 to 2014 generated from remotely sensed Landsat imagery were used to assess the recent patterns of oods. Results show that the oodplain has a population of 33 thousand living in 10,849 small permeant or temporary buildings with a total cropland area of 4976 ha. The oodplain hydrologyand ooding patterns have changed, con rmed by both surveys and satellite image analysis, due to catchment development and changing climate. The average annual inundated areas have increased from about 316 thousand ha in 1989e1998 to 488 thousand ha in 2005 e2014. As a result the inundated cropland and houses increased from 9% to 6% in 1989 to 73% and 47% in 2014, respectively. The timing of the oods has also changed with both delaying and early onset happening more frequently. These changes cause increasing dif culties in ood forecast and preparation using indigenous knowledge, therefore creating greater damages to crops, livestock, and houses. Current oodplain management system is inadequate and new interventions are needed to help manage the oods at a systematic manner

    Improving the accuracy of remotely sensed irrigated areas using post-classification enhancement through UAV [Unmanned Aerial Vehicle] capability

    No full text
    Although advances in remote sensing have enhanced mapping and monitoring of irrigated areas, producing accurate cropping information through satellite image classification remains elusive due to the complexity of landscapes, changes in reflectance of different land-covers, the remote sensing data selected, and image processing methods used, among others. This study extracted agricultural fields in the former homelands of Venda and Gazankulu in Limpopo Province, South Africa. Landsat 8 imageries for 2015 were used, applying the maximum likelihood supervised classifier to delineate the agricultural fields. The normalized difference vegetation index (NDVI) applied on Landsat imageries on the mapped fields during the dry season (July to August) was used to identify irrigated areas, because years of satellite data analysis suggest that healthy crop conditions during dry seasons are only possible with irrigation. Ground truth points totaling 137 were collected during fieldwork for pre-processing and accuracy assessment. An accuracy of 96% was achieved on the mapped agricultural fields, yet the irrigated area map produced an initial accuracy of only 71%. This study explains and improves the 29% error margin from the irrigated areas. Accuracy was enhanced through post-classification correction (PCC) using 74 post-classification points randomly selected from the 2015 irrigated area map. High resolution aerial photographs of the 74 sample fields were acquired by an unmanned aerial vehicle (UAV) to give a clearer picture of the irrigated fields. The analysis shows that mapped irrigated fields that presented anomalies included abandoned croplands that had green invasive alien species or abandoned fruit plantations that had high NDVI values. The PCC analysis improved irrigated area mapping accuracy from 71% to 95%

    Informing equitable water and food policies through accurate spatial information on irrigated areas in smallholder farming systems

    No full text
    Accurate information on irrigated areasā€™ spatial distribution and extent are crucial in enhancing agricultural water productivity, water resources management, and formulating strategic policies that enhance water and food security and ecologically sustainable development. However, data are typically limited for smallholder irrigated areas, which is key to achieving social equity and equal distribution of financial resources. This study addressed this gap by delineating disaggregated smallholder and commercial irrigated areas through the random forest algorithm, a non-parametric machine learning classifier. Location within or outside former apartheid ā€œhomelandsā€ was taken as a proxy for smallholder, and commercial irrigation. Being in a medium rainfall area, the huge irrigation potential of the Inkomati-Usuthu Water Management Area (UWMA) is already well developed for commercial crop production outside former homelands. However, information about the spatial distribution and extent of irrigated areas within former homelands, which is largely informal, was missing. Therefore, we first classified cultivated lands in 2019 and 2020 as a baseline, from where the Normalised Difference Vegetation Index (NDVI) was used to distinguish irrigated from rainfed, focusing on the dry winter period when crops are predominately irrigated. The mapping accuracy of 84.9% improved the efficacy in defining the actual spatial extent of current irrigated areas at both smallholder and commercial spatial scales. The proportion of irrigated areas was high for both commercial (92.5%) and smallholder (96.2%) irrigation. Moreover, smallholder irrigation increased by over 19% between 2019 and 2020, compared to slightly over 7% in the commercial sector. Such information is critical for policy formulation regarding equitable and inclusive water allocation, irrigation expansion, land reform, and food and water security in smallholder farming systems

    An Assessment of the Impacts of Climate Variability and Change in KwaZulu-Natal Province, South Africa

    No full text
    Rainfall and air temperature variability pose the greatest risk to environmental change. Past trends in rainfall and air temperature facilitate projecting future climate changes for informed policy responses. We used a combination of the normalised difference vegetation index (NDVI) and observed data from 1968 to 2017 to assess changes in rainfall, moisture stress, and air temperature variability over time on bioclimatic regions of KwaZulu-Natal (KZN) Province, South Africa. Indicators used included consecutive dry days (CDDs), consecutive wet days (CWDs), very heavy rainfall days (R20), monthly maximum daily maximum air temperature (TXx), monthly minimum daily minimum air temperature (TNn), the total number of rainfall days, and monthly air temperature averages. Trends in rainfall and moisture stress are notable in different bioclimatic regions across the province. However, these trends are diverse, in general, and spatially different across and within the bioclimatic regions. Further, related rainfall indicators do not respond in the same way as would be expected. Air temperature trends were consistent with global trends and landā€“air temperature anomalies. Although daytime air temperatures showed a positive trend, extreme air temperature events and increases are predominant in inland regions. Night-time air temperatures showed an upward trend in most stations across KZN. Local weather-and-climate related characteristics are evolving due to climatic variability and change. The study shows that changes in climatic activities are detectable at a local level from existing historical weather data; therefore, adaptation strategies should be contextualised to respond to local and area-specific challenges

    Opportunities to improve eco-agriculture through transboundary governance in transfrontier conservation areas

    Get PDF
    Transfrontier Conservation Areas (TFCAs) are critical biodiversity areas for the conservation and sustainable use of biological and cultural resources while promoting regional peace, cooperation, and socio-economic development. Sustainable management of TFCAs is dependent on the availability of an eco-agriculture framework that promotes integrated management of conservation mosaics in terms of food production, environmental protection or the conservation of natural resources, and improved human livelihoods. As a developmental framework, eco-agriculture is significantly influenced by existing legal and governance structures at all levels; this study assessed the impact of existing legal and governance frameworks on eco-agriculture implementation in the Lubombo TFCA that cuts across the borders between Mozambique, Eswatini, and South Africa. The assessment used a mixed research method, including a document review, key informant interviews, and focus group discussions. Although the three countries have no eco-agriculture policies, biodiversity practices are directly or indirectly affected by some policies related to environmental protection, agriculture improvement, and rural development. The assessment found that South Africa has the most comprehensive policies related to eco-agriculture; Mozambican policies mainly focus on equity and involvement of disadvantaged social groups, while Eswatini is conspicuous for explicitly making it the responsibility of each citizen to protect and safeguard the environment. The protection of conservation areas is critical to preserving natural habitats and ensuring the continued provision of ecosystem services. The lack of transboundary governance structures results in the Lubombo TFCA existing as a treaty on paper, as there are no clear processes for transboundary cooperation and collaboration
    corecore