25 research outputs found

    Numerical simulation of non-reacting diesel fuel sprays under low temperature late injection operating condition

    Get PDF
    AbstractAccurate simulations on combustion and emission characteristics of direct injection diesel engines are highly dependent on detailed prediction of equivalence ratio distribution inside the combustion chamber. In this study, Open-FOAM and Lib-ICE multi-dimensional CFD frameworks were used in order to model engine flow, liquid diesel fuel spray, break-up, evaporation and mixing. Simulations were conducted on the basis of experimental data from SANDIA optical engine. Initial simulation results showed tangible discrepancy with the experimental equivalence ratio data in distribution of fuel-rich zones. Investigations on three different injection angles in three different combustion chamber bowl geometries showed that cavitation phenomenon was most probably occurred in injector nozzle during the experiments. Onset of cavitation in injector nozzle internal flow can noticeably change the spray break-up length and cause asymmetric spray angle later inside the combustion chamber. Taking cavitation effects into account, simulations were performed by corrected values of spray break-up length and injection angle based on experimental injection pressure and nozzle orifice dimensions. Final spray simulations showed better agreement with experimental results for all of three bowl geometries. This enhanced accuracy of numerical prediction without unacceptable tuning of spray sub-model parameters

    Modelling compression ignition engines by incorporation of the flamelet generated manifolds combustion closure

    Get PDF
    Tabulated chemistry models allow to include detailed chemistry effects at low cost in numerical simulations of reactive flows. Characteristics of the reactive fluid flows are described by a reduced set of parameters that are representative of the flame structure at small scales so-called flamelets. For a specific turbulent combustion configuration, flamelet combustion closure, with proper formulation of the flame structure can be applied. In this study, flamelet generated manifolds (FGM) combustion closure with progress variable approach were incorporated with OpenFOAM® source code to model combustion within compression ignition engines. For IC engine applications, multi-dimensional flamelet look-up tables for counter flow diffusive flame configuration were generated. Source terms of non-premixed combustion configuration in flamelet domain were tabulated based on pressure, temperature of unburned mixture, mixture fraction, and progress variable. A new frozen flamelet method was introduced to link one dimensional reaction diffusion space to multi-dimensional Computational Fluid Dynamics (CFD) physical space to fulfill correct modelling of thermal state of the engine at expansion stroke when charge composition was changed after combustion and reaction rates were subsided. Predictability of the developed numerical framework were evaluated for Sandia Spray A (constant volume vessel), Spray B (light duty optical Diesel engine), and a heavy duty Diesel engine experiments under Reynolds averaged Navier Stokes turbulence formulation. Results showed that application of multi-dimensional FGM combustion closure can comprehensively predict key parameters such as: ignition delay, in-cylinder pressure, apparent heat release rate, flame lift-off, and flame structure in Diesel engines

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Investigation on effect of equivalence ratio and engine speed on homogeneous charge compression ignition combustion using chemistry based CFD code

    Get PDF
    Combustion in a large-bore natural gas fuelled diesel engine operating under Homogeneous Charge Compression Ignition mode at various operating conditions is investigated in the present paper. Computational Fluid Dynamics model with integrated chemistry solver is utilized and methane is used as surrogate of natural gas fuel. Detailed chemical kinetics mechanism is used for simulation of methane combustion. The model results are validated using experimental data by Aceves, et al. (2000), conducted on the single cylinder Volvo TD100 engine operating at Homogeneous Charge Compression Ignition conditions. After verification of model predictions using in-cylinder pressure histories, the effect of varying equivalence ratio and engine speed on combustion parameters of the engine is studied. Results indicate that increasing engine speed provides shorter time for combustion at the same equivalence ratio such that at higher engine speeds, with constant equivalence ratio, combustion misfires. At lower engine speed, ignition delay is shortened and combustion advances. It was observed that increasing the equivalence ratio retards the combustion due to compressive heating effect in one of the test cases at lower initial pressure. Peak pressure magnitude is increased at higher equivalence ratios due to higher energy input.Publisher's Versio

    Investigation on effect of equivalence ratio and engine speed on homogeneous charge compression ignition combustion using chemistry based CFD code

    Get PDF
    \u3cp\u3eCombustion in a large-bore natural gas fuelled diesel engine operating under homogeneous charge compression ignition mode at various operating conditions is investigated in the present paper. Computational fluid dynamics model with integrated chemistry solver is utilized and methane is used as surrogate of natural gas fuel. Detailed chemical kinetics mechanism is used for simulation of methane combustion. The model results are validated using experimental data by Aceves, et al., conducted on the single cylinder Volvo TD100 engine operating at homogeneous charge compression ignition conditions. After verification of model predictions using in-cylinder pressure histories, the effect of varying equivalence ratio and engine speed on combustion parameters of the engine is studied. Results indicate that increasing engine speed provides shorter time for combustion at the same equivalence ratio such that at higher engine speeds, with constant equivalence ratio, combustion misfires. At lower engine speed, ignition delay is shortened and combustion advances. It was observed that increasing the equivalence ratio retards the combustion due to compressive heating effect in one of the test cases at lower initial pressure. Peak pressure magnitude is increased at higher equivalence ratios due to higher energy input.\u3c/p\u3

    Investigation on effect of equivalence ratio and engine speed on homogeneous charge compression ignition combustion using chemistry based CFD code

    No full text
    Combustion in a large-bore natural gas fuelled diesel engine operating under Homogeneous Charge Compression Ignition mode at various operating conditions is investigated in the present paper. Computational Fluid Dynamics model with integrated chemistry solver is utilized and methane is used as surrogate of natural gas fuel. Detailed chemical kinetics mechanism is used for simulation of methane combustion. The model results are validated using experimental data by Aceves, et al. (2000), conducted on the single cylinder Volvo TD100 engine operating at Homogeneous Charge Compression Ignition conditions. After verification of model predictions using in-cylinder pressure histories, the effect of varying equivalence ratio and engine speed on combustion parameters of the engine is studied. Results indicate that increasing engine speed provides shorter time for combustion at the same equivalence ratio such that at higher engine speeds, with constant equivalence ratio, combustion misfires. At lower engine speed, ignition delay is shortened and combustion advances. It was observed that increasing the equivalence ratio retards the combustion due to compressive heating effect in one of the test cases at lower initial pressure. Peak pressure magnitude is increased at higher equivalence ratios due to higher energy input

    Investigation on effect of equivalence ratio and engine speed on homogeneous charge compression ignition combustion using chemistry based CFD code

    Get PDF
    \u3cp\u3eCombustion in a large-bore natural gas fuelled diesel engine operating under homogeneous charge compression ignition mode at various operating conditions is investigated in the present paper. Computational fluid dynamics model with integrated chemistry solver is utilized and methane is used as surrogate of natural gas fuel. Detailed chemical kinetics mechanism is used for simulation of methane combustion. The model results are validated using experimental data by Aceves, et al., conducted on the single cylinder Volvo TD100 engine operating at homogeneous charge compression ignition conditions. After verification of model predictions using in-cylinder pressure histories, the effect of varying equivalence ratio and engine speed on combustion parameters of the engine is studied. Results indicate that increasing engine speed provides shorter time for combustion at the same equivalence ratio such that at higher engine speeds, with constant equivalence ratio, combustion misfires. At lower engine speed, ignition delay is shortened and combustion advances. It was observed that increasing the equivalence ratio retards the combustion due to compressive heating effect in one of the test cases at lower initial pressure. Peak pressure magnitude is increased at higher equivalence ratios due to higher energy input.\u3c/p\u3

    Numerical study of combustion and emission characteristics of dual-fuel engines using 3D-CFD models coupled with chemical kinetics

    No full text
    Dual-fuel combustion provides a relatively easy and inexpensive alternative to conventional diesel engine combustion by drastically reducing fuel consumption with comparable performance characteristics. Accurate simulation of the dual-fuel combustion requires utilization of a detailed chemistry combined with a flow simulation code. In the present study, the combustion process within the diesel and diesel/gas dual-fuel engine is investigated by use of a coupled 3D-CFD/chemical kinetics framework. In this study, methane and n-heptane are used as representatives of the natural gas and diesel fuels. The multi-dimensional KIVA-3V code, with modified combustion and heat transfer models, incorporates a chemical kinetics mechanism for n-heptane and methane oxidation chemistry. The source terms in energy and species conservation equations due to chemical reactions are calculated by integrating the CHEMKIN chemistry solver into the KIVA code. The model is applied to simulation of a medium duty dual-fuel converted diesel engine. A chemical kinetics mechanism which consists of 42 species and 57 reactions is used for prediction of n-heptane oxidation chemistry. Simulation of dual-fuel combustion is performed using the same mechanism with addition of a series of major methane oxidation pathways. The results show that Zheng and Yao's n-heptane mechanism which had been previously validated in their work, can model the diesel and dual-fuel combustion, where fuel-rich zones are present. The predictive model of this study is validated using available published experimental data. Results show that pressure and ignition delay predictions are in good agreement with experiments. Based on constant total mixture input energy in dual-fuel combustion, increasing pilot fuel amount leads to shorter ignition delay and peak pressure increment. It is found that concentrations of NOx and CO emissions tend to increase at higher pilot fuel injection quantities
    corecore