36 research outputs found

    Wang-MacDonald d-wave vortex cores observed in heavily overdoped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    Low magnetic field scanning tunneling spectroscopy of individual Abrikosov vortices in heavily overdoped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} unveils a clear d-wave electronic structure of the vortex core, with a zero-bias conductance peak at the vortex center that splits with increasing distance from the core. We show that previously reported unconventional electronic structures, including the low energy checkerboard charge order in the vortex halo and the absence of a zero-bias conductance peak at the vortex center, are direct consequences of short inter-vortex distance and consequent vortex-vortex interactions prevailing in earlier experiments.Comment: Main text : 5 pages, 4 figures Supplemental material : 3 pages, 2 figure

    Revisiting the vortex-core tunnelling spectroscopy in YBa2_2Cu3_3O7−δ_{7-\delta}

    Full text link
    The observation by scanning tunnelling spectroscopy (STS) of Abrikosov vortex cores in the high-temperature superconductor YBa2_2Cu3_3O7−δ_{7-\delta} (Y123) has revealed a robust pair of electron-hole symmetric states at finite subgap energy. Their interpretation remains an open question because theory predicts a different signature in the vortex cores, characterised by a strong zero-bias conductance peak. We present STS data on very homogeneous Y123 at 0.4 K revealing that the subgap features do not belong to vortices: they are actually observed everywhere along the surface with high spatial and energy reproducibility, even in the absence of magnetic field. Detailed analysis and modelling show that these states remain unpaired in the superconducting phase and belong to an incoherent channel which contributes to the tunnelling signal in parallel with the superconducting density of states.Comment: Final version with supplementary materia

    Fingerprint of dynamical charge/spin correlations in the tunneling spectra of colossal magnetoresistive manganites

    Full text link
    We present temperature-dependent scanning tunneling spectroscopy measurements on La1−xCaxMO3La_{1-x}Ca_{x}MO_{3} (x∼0.33x\sim0.33) films with different degrees of biaxial strain. A depletion in normalized conductance around the Fermi level is observed both above and below the insulator-to-metal transition temperature TMIT_{MI}, for weakly as well as highly-strained films. This pseudogap-like depletion globally narrows on cooling. The zero-bias conductance decreases on cooling in the insulating phase, reaches a minimum close to TMIT_{MI} and increases on cooling in the metallic phase, following the trend of macroscopic conductivity. These results support a recently proposed scenario in which dynamical short-range antiferromagnetic/charge order correlations play a preeminent role in the transport properties of colossal magnetoresistive manganites [R. Yu \textit{et al}., Phys. Rev. B \textbf{77}, 214434 (2008)].Comment: 9 pages, 4 figure

    Vortex-core spectroscopy of dd-wave cuprate high-temperature superconductors

    Full text link
    The mechanism of high-temperature superconductivity remains one of the great challenges of contemporary physics. Here, we review efforts to image the vortex lattice in copper oxide-based high-temperature superconductors and to measure the characteristic electronic structure of the vortex core of a dd-wave superconductor using scanning tunneling spectroscopy.Comment: Main text : 7 pages, 8 figure

    Scanning tunneling spectroscopy of high-temperature superconductors

    Full text link
    Tunneling spectroscopy played a central role in the experimental verification of the microscopic theory of superconductivity in the classical superconductors. Initial attempts to apply the same approach to high-temperature superconductors were hampered by various problems related to the complexity of these materials. The use of scanning tunneling microscopy/spectroscopy (STM/STS) on these compounds allowed to overcome the main difficulties. This success motivated a rapidly growing scientific community to apply this technique to high-temperature superconductors. This paper reviews the experimental highlights obtained over the last decade. We first recall the crucial efforts to gain control over the technique and to obtain reproducible results. We then discuss how the STM/STS technique has contributed to the study of some of the most unusual and remarkable properties of high-temperature superconductors: the unusual large gap values and the absence of scaling with the critical temperature; the pseudogap and its relation to superconductivity; the unprecedented small size of the vortex cores and its influence on vortex matter; the unexpected electronic properties of the vortex cores; the combination of atomic resolution and spectroscopy leading to the observation of periodic local density of states modulations in the superconducting and pseudogap states, and in the vortex cores.Comment: To appear in RMP; 65 pages, 62 figure

    Wang-MacDonald d-wave vortex cores observed in heavily overdoped Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+δ</sub>

    No full text
    Low magnetic field scanning tunneling spectroscopy of individual Abrikosov vortices in heavily overdoped Bi2Sr2CaCu2O8+δ unveils a clear d-wave electronic structure of the vortex core, with a zero-bias conductance peak at the vortex center that splits with increasing distance from the core. We show that previously reported unconventional electronic structures, including the low energy checkerboard charge order in the vortex halo and the absence of a zero-bias conductance peak at the vortex center, are direct consequences of short inter-vortex distance and consequent vortex-vortex interactions prevailing in earlier experiments
    corecore