6 research outputs found

    A Bayesian approach to linking archaeological, paleoenvironmental and documentary datasets relating to the settlement of Iceland (Landnám)

    Get PDF
    YesIcelandic settlement (Landnám) period farmsteads offer opportunities to explore the nature and timing of anthropogenic activities and environmental impacts of the first Holocene farming communities. We employ Bayesian statistical modelling of archaeological, paleoenvironmental and documentary datasets to present a framework for improving chronological robustness of archaeological events. Specifically, we discuss events relevant to the farm Hrísbrú, an initial and complex settlement site in southwest Iceland. We demonstrate that tephra layers are key in constraining reliable chronologies, especially when combined with related datasets and treated in a Bayesian framework. The work presented here confirms earlier interpretations of the chronology of the site while providing increased confidence in the robustness of the chronology. Most importantly, integrated modelling of AMS radiocarbon dates on Hordeum vulgare grains, palynological data, documented evidence from textual records and typologically diagnostic artefacts yield increased dating reliability. The analysis has also shown that AMS radiocarbon dates on bone collagen need further scrutiny. Specifically for the Hrísbrú farm, first anthropogenic footprint palynomorph taxa are estimated to around AD 830–881 (at 95.4% confidence level), most likely before the tephra fall out of AD 877 ± 1 (the Landnám tephra layer), demonstrating the use of arable fields before the first known structures were built at Hrísbrú (AD 874–951) and prior to the conventionally accepted date of the settlement of Iceland. Finally, we highlight the importance of considering multidisciplinary factors for other archaeological and paleoecological studies of early farming communities of previously uninhabited island areas

    Obesity and diabetes: from genetics to epigenetics

    No full text
    Obesity is becoming an epidemic health problem. During the last years not only genetic but also, and primarily, environmental factors have been supposed to contribute to the susceptibility to weight gain or to develop complications such as type 2 diabetes. In spite of the intense efforts to identify genetic predisposing variants, progress has been slow and success limited, and the common obesity susceptibility variants identified only explains a small part of the individual variation in risk. Moreover, there is evidence that the current epidemic of obesity and diabetes is environment-driven. Recent studies indicate that normal metabolic regulation during adulthood besides requiring a good balance between energy intake and energy expenditure, can be also affected by pre- and post-natal environments. In fact, maternal nutritional constraint during pregnancy can alter the metabolic phenotype of the offspring by means of epigenetic regulation of specific genes, and this can be passed to the next generations. Studies focused on epigenetic marks in obesity found altered methylation and/or histone acetylation levels in genes involved in specific but also in more general metabolic processes. Recent researches point out the continuous increase of "obesogens", in the environment and food chains, above all endocrine disruptors, chemicals that interfere with many homeostatic mechanisms. Taken into account the already existing data on the effects of obesogens, and the multiple potential targets with which they might interfere daily, it seems likely that the exposure to obesogens can have an important role in the obesity and diabesity pandemic

    Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes

    No full text
    corecore