67 research outputs found

    Novel approaches to corticosteroid profiling by stable isotope dilution tandem mass spectrometry

    Get PDF

    Wie der konfessionelle Religionsunterricht vor Ort gestaltet wird : Ein Bottom-up-Zugang zur Komplexität kooperativer Organisationspraktiken an Berufsschulen

    Get PDF
    In Deutschland folgt die Implementierung des konfessionell-kooperativen Religionsunter­richts bislang meist einer Top-down-Logik. Besonders für das variantenreiche und schulorganisatorisch anspruchs­volle Feld der beruflichen Bildung lohnt sich jedoch die Betrachtung eines Bottom-up-Zugangs, bei dem in Orientie­rung an lokalen Organisationspraktiken des Religionsunterrichts auf Schulebene passende Gestaltungsformen ent­wickelt werden, welche die kontextuellen Herausforderungen „vor Ort“ berücksichtigen. Im vorliegenden Beitrag wird ein solcher Bottom-up-Zugang präsentiert, der auf qualitativ-empirische Befunde der wissenschaftlichen Be­gleitforschung zum StReBe-Schulprojekt aufbaut. Dabei werden zentrale Herausforderungen konturiert, die sich im Rahmen einer empirisch gestützten und mehrperspektivisch angelegten Bestandsaufnahme im Dialog mit zent­ralen Schul-Akteur*innen vor Ort als leitend für die Organisation von Religionsunterricht an Berufsschulen erwei­sen. Wenngleich die Implementierung eines konfessionell-kooperativen Religionsunterrichts kein lineares Ziel die­ses Schulprojekts darstellt, so zeigen die Befunde das Potenzial kooperativer Organisationsformen, insofern diese dazu beitragen, die organisatorische Komplexität des Religionsunterrichts an Berufsschulen zu reduzieren

    Tuning the contact conductance of anchoring groups in single molecule junctions by molecular design

    Get PDF
    A tetraphenylmethane tripod functionalized with three thiol moieties in the para position can serve as a supporting platform for functional molecular electronic elements. A combined experimental scanning tunneling microscopy break junction technique with theoretical approaches based on density functional theory and non-equilibrium Green`s function formalism was used for detailed charge transport analysis to find configurations, geometries and charge transport pathways in the molecular junctions of single molecule oligo-

    Longitudinal [18]UCB-H/[18F]FDG imaging depicts complex patterns of structural and functional neuroplasticity following bilateral vestibular loss in the rat

    Get PDF
    Neuronal lesions trigger mechanisms of structural and functional neuroplasticity, which can support recovery. However, the temporal and spatial appearance of structure–function changes and their interrelation remain unclear. The current study aimed to directly compare serial whole-brain in vivo measurements of functional plasticity (by [ 18 F]FDG-PET) and structural synaptic plasticity (by [ 18 F]UCB-H-PET) before and after bilateral labyrinthectomy in rats and investigate the effect of locomotor training. Complex structure–function changes were found after bilateral labyrinthectomy: in brainstem-cerebellar circuits, regional cerebral glucose metabolism (rCGM) decreased early, followed by reduced synaptic density. In the thalamus, increased [ 18 F]UCB-H binding preceded a higher rCGM uptake. In frontal-basal ganglia loops, an increase in synaptic density was paralleled by a decrease in rCGM. In the group with locomotor training, thalamic rCGM and [ 18 F]UCB-H binding increased following bilateral labyrinthectomy compared to the no training group. Rats with training had considerably fewer body rotations. In conclusion, combined [ 18 F]FDG/[ 18 F]UCB-H dual tracer imaging reveals that adaptive neuroplasticity after bilateral vestibular loss is not a uniform process but is composed of complex spatial and temporal patterns of structure–function coupling in networks for vestibular, multisensory, and motor control, which can be modulated by early physical training

    MafA and MafB Regulate Genes Critical to β-Cells in a Unique Temporal Manner

    Get PDF
    OBJECTIVE-Several transcription factors are essential to pancreatic islet beta-cell development, proliferation, and activity, including MafA and MafB. However, MafA and MafB are distinct from others in regard to temporal and islet cell expression pattern, with beta-cells affected by MafB only during development and exclusively by MafA in the adult. Our aim was to define the functional relationship between these closely related activators to the beta-cell. RESEARCH DESIGN AND METHODS-The distribution of MafA and MafB in the beta-cell population was determined immunohistochemically at various developmental and perinatal stages in mice. To identify genes regulated by MafB, microarray profiling was performed on wild-type and MafB(-/-) pancreata at embryonic day 18.5, with candidates evaluated by quantitative RT-PCR and in situ hybridization. The potential role of MafA in the expression of verified targets was next analyzed in adult islets of a pancreas-wide MafA mutant (termed MafA(Delta Panc)). RESULTS-MafB was produced in a larger fraction of beta-cells than MafA during development and found to regulate potential effectors of glucose sensing, hormone processing, vesicle formation, and insulin secretion. Notably, expression from many of these genes was compromised in MafA(Delta Panc) islets, suggesting that MafA is required to sustain expression in adults. CONCLUSIONS-Our results provide insight into the sequential manner by which MafA and MafB regulate islet beta-cell formation and maturation. Diabetes 59:2530-2539, 201

    Mode-coupling approach to non-Newtonian Hele-Shaw flow

    Full text link
    The Saffman-Taylor viscous fingering problem is investigated for the displacement of a non-Newtonian fluid by a Newtonian one in a radial Hele-Shaw cell. We execute a mode-coupling approach to the problem and examine the morphology of the fluid-fluid interface in the weak shear limit. A differential equation describing the early nonlinear evolution of the interface modes is derived in detail. Owing to vorticity arising from our modified Darcy's law, we introduce a vector potential for the velocity in contrast to the conventional scalar potential. Our analytical results address how mode-coupling dynamics relates to tip-splitting and side branching in both shear thinning and shear thickening cases. The development of non-Newtonian interfacial patterns in rectangular Hele-Shaw cells is also analyzed.Comment: 14 pages, 5 ps figures, Revtex4, accepted for publication in Phys. Rev.

    Ginkgo biloba Extract EGb 761 Improves Vestibular Compensation and Modulates Cerebral Vestibular Networks in the Rat

    Get PDF
    Unilateral inner ear damage is followed by behavioral recovery due to central vestibular compensation. The dose-dependent therapeutic effect of Ginkgo biloba extract EGb 761 on vestibular compensation was investigated by behavioral testing and serial cerebral [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral labyrinthectomy (UL). Five groups of 8 animals each were treated with EGb 761-supplemented food at doses of 75, 37.5 or 18.75 mg/kg body weight 6 weeks prior and 15 days post UL (groups A,B,C), control food prior and EGb 761-supplemented food (75 mg/kg) for 15 days post UL (group D), or control food throughout (group E). Plasma levels of EGb 761 components bilobalide, ginkgolide A and B were analyzed prior and 15 days post UL. Behavioral testing included clinical scoring of nystagmus, postural asymmetry, head roll tilt, body rotation during sensory perturbation and instrumental registration of mobility in an open field before and 1, 2, 3, 5, 7, 15 days after UL. Whole-brain [18F]-FDG-μPET was recorded before and 1, 3, 7, 15 days after UL. The EGb 761 group A (75 mg/kg prior/post UL) showed a significant reduction of nystagmus scores (day 3 post UL), of postural asymmetry (1, 3, 7 days post UL), and an increased mobility in the open field (day 7 post UL) as compared to controls (group E). Application of EGb 761 at doses of 37.5 and 18.75 mg/kg prior/post UL (groups B,C) resulted in faster recovery of postural asymmetry, but did not influence mobility relative to controls. Locomotor velocity increased with higher plasma levels of ginkgolide A and B. [18F]-FDG-μPET revealed a significant decrease of the regional cerebral glucose metabolism (rCGM) in the vestibular nuclei and cerebellum and an increase in the hippocampal formation with higher plasma levels of ginkgolides and bilobalide 1 and 3 days post UL. Decrease of rCGM in the vestibular nucleus area and increase in the hippocampal formation with higher plasma levels persisted until day 15 post UL. In conclusion, Ginkgo biloba extract EGb 761 improves vestibulo-ocular motor, vestibulo-spinal compensation, and mobility after UL. This rat study supports the translational approach to investigate EGb 761 at higher dosages for acceleration of vestibular compensation in acute vestibular loss

    Recommendations for diagnosing and managing individuals with glutaric aciduria type 1: Third revision

    Full text link
    Glutaric aciduria type 1 is a rare inherited neurometabolic disorder of lysine metabolism caused by pathogenic gene variations in GCDH (cytogenic location: 19p13.13), resulting in deficiency of mitochondrial glutaryl-CoA dehydrogenase (GCDH) and, consequently, accumulation of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid and glutarylcarnitine detectable by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Depending on residual GCDH activity, biochemical high and low excreting phenotypes have been defined. Most untreated individuals present with acute onset of striatal damage before age 3 (to 6) years, precipitated by infectious diseases, fever or surgery, resulting in irreversible, mostly dystonic movement disorder with limited life expectancy. In some patients, striatal damage develops insidiously. In recent years, the clinical phenotype has been extended by the finding of extrastriatal abnormalities and cognitive dysfunction, preferably in the high excreter group, as well as chronic kidney failure. Newborn screening is the prerequisite for pre-symptomatic start of metabolic treatment with low lysine diet, carnitine supplementation and intensified emergency treatment during catabolic episodes, which, in combination, have substantially improved neurologic outcome. In contrast, start of treatment after onset of symptoms cannot reverse existing motor dysfunction caused by striatal damage. Dietary treatment can be relaxed after the vulnerable period for striatal damage, that is, age 6 years. However, impact of dietary relaxation on long-term outcomes is still unclear. This third revision of evidence-based recommendations aims to re-evaluate previous recommendations (Boy et al., J Inherit Metab Dis, 2017;40(1):75-101; Kolker et al., J Inherit Metab Dis 2011;34(3):677-694; Kolker et al., J Inherit Metab Dis, 2007;30(1):5-22) and to implement new research findings on the evolving phenotypic diversity as well as the impact of non-interventional variables and treatment quality on clinical outcomes

    Ginkgo biloba Extract EGb 761 Improves Vestibular Compensation and Modulates Cerebral Vestibular Networks in the Rat

    Get PDF
    Unilateral inner ear damage is followed by behavioral recovery due to central vestibular compensation. The dose-dependent therapeutic effect of Ginkgo biloba extract EGb 761 on vestibular compensation was investigated by behavioral testing and serial cerebral [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral labyrinthectomy (UL). Five groups of 8 animals each were treated with EGb 761-supplemented food at doses of 75, 37.5 or 18.75 mg/kg body weight 6 weeks prior and 15 days post UL (groups A,B,C), control food prior and EGb 761-supplemented food (75 mg/kg) for 15 days post UL (group D), or control food throughout (group E). Plasma levels of EGb 761 components bilobalide, ginkgolide A and B were analyzed prior and 15 days post UL. Behavioral testing included clinical scoring of nystagmus, postural asymmetry, head roll tilt, body rotation during sensory perturbation and instrumental registration of mobility in an open field before and 1, 2, 3, 5, 7, 15 days after UL. Whole-brain [18F]-FDG-μPET was recorded before and 1, 3, 7, 15 days after UL. The EGb 761 group A (75 mg/kg prior/post UL) showed a significant reduction of nystagmus scores (day 3 post UL), of postural asymmetry (1, 3, 7 days post UL), and an increased mobility in the open field (day 7 post UL) as compared to controls (group E). Application of EGb 761 at doses of 37.5 and 18.75 mg/kg prior/post UL (groups B,C) resulted in faster recovery of postural asymmetry, but did not influence mobility relative to controls. Locomotor velocity increased with higher plasma levels of ginkgolide A and B. [18F]-FDG-μPET revealed a significant decrease of the regional cerebral glucose metabolism (rCGM) in the vestibular nuclei and cerebellum and an increase in the hippocampal formation with higher plasma levels of ginkgolides and bilobalide 1 and 3 days post UL. Decrease of rCGM in the vestibular nucleus area and increase in the hippocampal formation with higher plasma levels persisted until day 15 post UL. In conclusion, Ginkgo biloba extract EGb 761 improves vestibulo-ocular motor, vestibulo-spinal compensation, and mobility after UL. This rat study supports the translational approach to investigate EGb 761 at higher dosages for acceleration of vestibular compensation in acute vestibular loss
    corecore