36 research outputs found

    Internal force field in selected proteins

    Get PDF
    The fuzzy oil drop model suggests that the tertiary conformation of a protein – particularly a globular one - can be likened to a spherical micelle. During the folding process, hydrophilic residues are exposed on the surface, while hydrophobic residues are retained inside the protein. The resulting hydrophobicity distribution can be mathematically modeled as a 3D Gaussian. The fuzzy oil drop model is strikingly effective in explaining the properties of type II antifreeze proteins and fast-folding proteins, as well as a vast majority of autonomous protein domains. This work aims to determine whether similar mechanisms apply to other types of nonbonding interactions. Our analysis indicates that electrostatic and van der Waals forces do not conform to the Gaussian pattern. The study involves a reference protein (titin) which shows a high agreement between the observed distribution of hydrophobicity and the theoretical (Gaussian) distribution, a selection of amyloid structures derived from the Protein Data Bank, as well as transthyretin - a protein known for its susceptibility to amyloid transformation

    The structure of amyloid versus the structure of globular proteins

    Get PDF
    The issue of changing the structure of globular proteins into an amyloid form is in the focus of researchers' attention. Numerous experimental studies are carried out, and mathematical models to define the essence of amyloid transformation are sought. The present work focuses on the issue of the hydrophobic core structure in amyloids. The form of ordering the hydrophobic core in globular proteins is described by a 3D Gaussian distribution analog to the distribution of hydrophobicity in a spherical micelle. Amyloid fibril is a ribbon-like micelle made up of numerous individual chains, each representing a flat structure. The distribution of hydrophobicity within a single chain included in the fibril describes the 2D Gaussian distribution. Such a description expresses the location of polar residues on a circle with a center with a high level of hydrophobicity. The presence of this type of order in the amyloid forms available in Preotin Data Bank (PDB) (both in proto- and superfibrils) is demonstrated in the present work. In this system, it can be assumed that the amyloid transformation is a chain transition from 3D Gauss ordering to 2D Gauss ordering. This means changing the globular structure to a ribbon-like structure. This observation can provide a simple mathematical model for simulating the amyloid transformation of proteins

    Rooting affects the photosystem II activity : in vitro and ex vitro studies on energy hybrid sorrel

    Get PDF
    Rumex tianschanicus x Rumex patientia is a high-biomass-yielding plant suitable for fuel and biogas production. The protocol of the hybrid sorrel micropropagation was used to study the changes in the photosystem II (PSII) activity as well as to analyse the ultrastructure of the chloroplasts. The lowest effective PSII quantum yield [Y(II)] and an apparent electron transport rate of PSII [ETR(II)] were observed for adventitious shoots that had been regenerated in vitro, before rooting. These fluorescence parameters were higher and similar for both the leaves of the same adventitious shoots that had been rooted under in vitro conditions and for the shoots that had been acclimated and grown in ex vitro conditions. The analysis indicated that the PSII activity strongly depends on the formation of properly functioning roots and that in vitro or ex vitro culture conditions are, at least to some degree, less important. TEM analysis revealed that chloroplasts from plants rooted in vitro were sufficiently mature and acclimatization processes have less impact on their devel- opment. This is the first report concerning the analysis of PSII activity and the ultrastructure of the chloroplasts at all of the stages of micropropagation, i.e. adventitious shoot formation in vitro, rooting in vitro and acclimation to ex vitro conditions. It strongly indicated that rooting under in vitro conditions, rather than the acclimation to ex vitro conditions, plays a key role in the development of a completely functional photosynthetic apparatus in hybrid sorrel

    Different synergy in amyloids and biologically active forms of proteins

    Get PDF
    Protein structure is the result of the high synergy of all amino acids present in the protein. This synergy is the result of an overall strategy for adapting a specific protein structure. It is a compromise between two trends: The optimization of non-binding interactions and the directing of the folding process by an external force field, whose source is the water environment. The geometric parameters of the structural form of the polypeptide chain in the form of a local radius of curvature that is dependent on the orientation of adjacent peptide bond planes (result of the respective Phi and Psi rotation) allow for a comparative analysis of protein structures. Certain levels of their geometry are the criteria for comparison. In particular, they can be used to assess the differences between the structural form of biologically active proteins and their amyloid forms. On the other hand, the application of the fuzzy oil drop model allows the assessment of the role of amino acids in the construction of tertiary structure through their participation in the construction of a hydrophobic core. The combination of these two models-the geometric structure of the backbone and the determining of the participation in the construction of the tertiary structure that is applied for the comparative analysis of biologically active and amyloid forms - is presented

    Alternative Hydrophobic Core in Proteins - The Effect of Specific Synergy

    Get PDF
    Proteins with a high degree of sequence similarity representing different structures provide a key to understand how protein sequence codes for 3D structure. An analysis using the fuzzy oil drop model was carried out on two pairs of proteins with different secondary structures and with high sequence identities. It has been shown that distributions of hydrophobicity for these proteins are approximated well using single 3D Gaussian function. In other words, the similar sequences fold into different 3D structures, however, alternative structures also have symmetric and monocentric hydrophobic cores. It should be noted that a significant change in the helical to beta-structured form in the N-terminal section takes places in the fragment much preceding the location of the mutated regions. It can be concluded that the final structure is the result of a complicated synergy effect in which the whole chain participates simultaneously

    The status of edge strands in ferredoxin-like fold

    Get PDF
    There is an opinion in professional literature that edge-strands in β-sheet are critical to the processes of amyloid transformation. Propagation of fibrillar forms mainly takes place on the basis of β-sheet type interactions. In many proteins, the edge strands represent only a partially matched form to the β-sheet. Therefore, the edge-strand takes slightly distorted forms. The assessment of the level of arrangement can be carried out based on studying the secondary structure as well as the structure of the hydrophobic core. For this purpose, a fuzzy oil drop model was used to determine the contribution of each fragment with a specific secondary structure to the construction of the system being the effect of a certain synergy, which results in the construction of a hydrophobic core. Studying the participation of β-sheets edge fragments in the hydrophobic core construction is the subject of the current analysis. Statuses of these edge fragments in β-sheets in ferredoxin-like folds are treated as factors that disturb the symmetry of the system

    Filamentous aggregates of tau proteins fulfil standard amyloid criteria provided by the fuzzy oil drop (FOD) model

    Get PDF
    Abnormal filamentous aggregates that are formed by tangled tau protein turn out to be classic amyloid fibrils, meeting all the criteria defined under the fuzzy oil drop model in the context of amyloid characterization. The model recognizes amyloids as linear structures where local hydrophobicity minima and maxima propagate in an alternating manner along the fibril’s long axis. This distribution of hydrophobicity differs greatly from the classic monocentric hydrophobic core observed in globular proteins. Rather than becoming a globule, the amyloid instead forms a ribbonlike (or cylindrical) structure

    A patient with ischemic stroke and myocardial infarction undergoing interventional treatment - a case report

    Get PDF
    The coexistence of acute ischemic stroke and acute myocardial infarction is rare. The reperfusion therapy used in the therapeutic window is the golden standard in the treatment of both diseases. We present a case of successful aspiration thrombectomy circumflex anterior artery and effective mechanical thrombectomy of the right internal carotid artery in a 49 - year-old female patient with myocardial infarction and ischemic stroke. When admitted in a neurological examination she received 16 points. on the NIHSS scale. The patient was discharged from the clinic as an independent, with slight hemiparesis (NIHSS 4 points). The result of recanalization was 3 points in the TICI scale. After intravascular treatment, the patient was advised to use anticoagulant therapy due to arterial thrombosis in two vascular areas and a high probability of thrombophilia until complete diagnostics. During the hospitalization, cardiovascular diseases were diagnosed. Transesophageal echocardiography showed a left-right flow through Botallio foramen width of 3 mm, with no visible reversal of leakage after contrast administration. After 3 months, tests were performed that did not confirm thrombophilia. The question of closing the surviving Botallio foramen, re-performing Holter and further genetic testing remains to be considered
    corecore