7 research outputs found

    Phosphatidylserine Membrane Translocation in Human Spermatozoa: Topography in Membrane Domains and Relation to Cell Vitality

    Get PDF
    The complex structure of the human spermatozoa membrane comprises five topographic domains. Transmembrane asymmetry of the distribution of phospholipids including phosphatidylserine (PS) is considered a marker of cell activity. The objective of the study was to determine which cytomembrane domains of human spermatozoa are involved in PS membrane translocation and to identify the possible relationship of PS translocation with spermatozoa morphology and vitality. In normozoospermic semen of 35 donors, annexin-V labeling with fluorescein determined PS translocation. Propidium iodide staining distinguished between vital and dead spermatozoa. Three types of PS membrane translocation have been distinguished: (1) in the midpiece, (2) in the acrosomal part and (3) simultaneously in the midpiece and acrosomal part. In morphologically normal vital spermatozoa, PS translocation occurred in the midpiece but never in the equatorial region. In dead spermatozoa, simultaneous PS translocation in the midpiece and acrosomal part was most often observed. The difference between proportions of, respectively, vital and dead spermatozoa presenting PS translocation located in different domains was significant (P < 0.0001). In vital cells, there was no difference in PS translocation prevalence between morphologically normal and abnormal spermatozoa (P > 0.05). The strict relation of PS translocation to specific membrane domains indicates functional specificity. It seems doubtful to include this phenomenon in physiological mechanisms of elimination of abnormal spermatozoa

    17β-estradiol and xenoestrogens reveal synergistic effect on mitochondria of human sperm

    Get PDF
    Objectives: The aim of the study was to investigate the influence of 17β-estradiol (main endogenous estrogen) and selected xenoestrogens (genistein, bisphenol-A), individually and in combination, on the mitochondrial function of human sper­matozoa. In natural environment, human beings are exposed to multiple xenoestrogens, so their impact is combined with endogenous steroids. Material and methods: The effects of ligands on human spermatozoa were assessed regarding the following phenomena: spermatozoa vitality (propidium iodide staining), phosphatidylserine membrane translocation (staining with annexin V marked with fluorescein), mitochondrial membrane potential (using JC-1 fluorochrome), and production of superoxide anion in mitochondria (using MitoSOX RED dye). Results: Two-hour incubation of spermatozoa with 17β-estradiol, genistein, and bisphenol-A neither altered cell vitality nor stimulated phosphatidylserine membrane translocation. Incubation of spermatozoa with 17β-estradiol or bisphenol-A sepa­rately, as well as incubation with the three ligands simultaneously, resulted in altered mitochondrial membrane potential. Spermatozoa incubation with the three ligands significantly increased the mitochondrial superoxide anion level. Conclusions: It seems safe to conclude that human spermatozoa mitochondria are target cell structures for both, 17β-estradiol and xenoestrogens. The reaction to the 17β-estradiol and xenoestrogens mixture suggests a synergistic mechanism of action. Xenoestrogens may increase the sensitivity of spermatozoa to 17β-estradiol

    Hydroxyflutamide alters the characteristics of live boar spermatozoa

    No full text
    Our previous study revealed that in vitro incubation of boar ejaculates with hydroxyflutamide (OH-Flu) causes changes in sperm plasma membrane integrity and its stability and sperm mitochondrial oxidative capability. To broaden the knowledge of cellular physiology of spermatozoa, we investigated direct effects of OH-Flu administered for 2 and 24 hours at concentrations of 5, 50, and 100 µg/mL, on sperm mitochondrial membrane potential and mitochondrial superoxide anion production using JC-1 dye and MitoSOX Red fluorescent probe, respectively. We further measured phosphatidylserine membrane translocation (PST) from the inner to the outer layer of the sperm plasma membrane using an annexin-V binding assay. To provide new information of direct effects of OH-Flu on cell signaling pathway, we measured sperm intracellular calcium ion dynamics using Fluo-3. Finally, we assessed sperm motility using a computer-assisted spermatozoa analysis system. Motile sperm were highlighted using the "C-Ruch" computer program for detailed analysis of the straight line velocity distribution. For each functional test, boar spermatozoa were examined and analyzed by flow cytometry and/or confocal microscopy. The results revealed a significant decrease (P < 0.05) in sperm mitochondrial membrane potential and a concomitant increase (P < 0.05) in mitochondrial superoxide anion production after a 2-hour incubation with 50 mu g OH-Flu compared with the respective controls and other doses used (P < 0.05). The adverse effects of OH-Flu become strengthened over time (P < 0.05). Notably, 50 and 100 µg OH-Flu appeared to be effective in decreasing sperm motility. Hydroxyflutamide significantly decreased (P < 0.05) the fast sperm subpopulation percentage after 15 minutes and reduced the straight line velocity distribution (P < 0.05). An assessment of PST revealed an increase in the percentage of PST-positive spermatozoa (P < 0.05)only after exposure to OH-Flu for 24 hours. Moreover, OH-Flu at all concentrations induced a rapid increase in sperm intracellular calcium ion concentration. Altogether, the altered in vitro characteristics of live boar spermatozoa provide new insight into direct effects of OH-Flu on sperm mitochondrial membrane potential, superoxide anion production, translocation of membrane phosphatidylserine, free calcium ion dynamics, and sperm motility

    Impact of Biometric Patient Data, Probiotic Supplementation, and Selected Gut Microorganisms on Calprotectin, Zonulin, and sIgA Concentrations in the Stool of Adults Aged 18&ndash;74 Years

    No full text
    Alterations to the intestinal barrier may be involved in the pathogenesis of various chronic diseases. The diagnosis of mucosal barrier disruption has become a new therapeutic target for disease prevention. The aim of this study was to determine whether various patient demographic and biometric data, often not included in diagnostic analyses, may affect calprotectin, zonulin, and sIgA biomarker values. Stool markers&rsquo; levels in 160 samples were measured colorimetrically. The analysis of twenty key bacteria (15 genera and 5 species) was carried out on the basis of diagnostic tests, including cultures and molecular tests. The concentrations of selected markers were within reference ranges for most patients. The sIgA level was significantly lower in participants declaring probiotics supplementation (p = 0.0464). We did not observe differences in gastrointestinal discomfort in participants. We found significant differences in the sIgA level between the 29&ndash;55 years and &gt;55 years age-related intervals groups (p = 0.0191), together with a significant decreasing trend (p = 0.0337) in age-dependent sIgA concentration. We observed complex interdependencies and relationships between their microbiota and the analyzed biomarkers. For correct clinical application, standardized values of calprotectin and sIgA should be determined, especially in elderly patients. We observed a correlation between the composition of the gut community and biomarker levels, although it requires further in-depth analysis
    corecore