8 research outputs found

    Advancing the use of passive sampling in risk assessment and management of contaminated sediments: Results of an international passive sampling inter-laboratory comparison

    Get PDF
    This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practical guidance for standardized passive sampling, and advance the use of passive sampling in regulatory decision making by increasing confidence in the use of the technique. The study was performed by a consortium of 11 laboratories and included experiments with 14 passive sampling formats on 3 sediments for 25 target chemicals (PAHs and PCBs). The resulting overall interlaboratory variability was large (a factor of ∼10), but standardization of methods halved this variability. The remaining variability was primarily due to factors not related to passive sampling itself, i.e., sediment heterogeneity and analytical chemistry. Excluding the latter source of variability, by performing all analyses in one laboratory, showed that passive sampling results can have a high precision and a very low intermethod variability

    Turbulent mixing accelerates PAH desorption due to fragmentation of sediment particle aggregates

    No full text
    Purpose: Stripping contaminants from sediments with granular activated carbon (GAC) is a promising remediation technique in which the effectiveness depends on the rate of contaminant extraction from the sediment by the GAC. The purpose of the present study was to investigate the effect of mixing intensity on the short-term extraction rate of polycyclic aromatic hydrocarbons (PAHs) from contaminated sediment. Materials and methods: PAH desorption from sediment at a wide range of rotational speeds (min−1; rotations per minute (rpm)) was monitored by uptake in Tenax polymeric resins using a completely mixed batch reactor. Desorption data were interpreted using a radial diffusion model. Desorption parameters obtained with the radial diffusion model were correlated with particle size measurements and interpreted mechanistically. Results and discussion: Fast desorption rate constants, De/r2, with De the effective diffusion coefficient and r the particle radius, ranged from 3.7 × 10−3 to 1.1 × 10−1 day−1 (PHE) and 6 × 10−6 to 1.9 × 10−4 day−1 (CHR), respectively, and increased with the intensity of mixing. The De/r2 values would correspond to De ranges of 1.8 × 10−14–1.2 × 10−16 m2 × day−1 and 1.8 × 10−12–3.7 × 10−15 m2 × day−1, assuming fast desorption from the measured smallest particle size (9 μm) classes at 200 and 600 rpm, respectively. Conclusions: Desorption of PAHs was significantly accelerated by a reduction of particle aggregate size caused by shear forces that were induced by mixing. The effective intra-particle diffusion coefficients, De, were larger at higher mixing rates.</p

    Interlaboratory Study of Polyethylene and Polydimethylsiloxane Polymeric Samplers for Ex Situ Measurement of Freely Dissolved Hydrophobic Organic Compounds in Sediment Porewater

    No full text
    We evaluated the precision and accuracy of multilaboratory measurements for determining freely dissolved concentrations (Cfree ) of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in sediment porewater using polydimethylsiloxane (PDMS) and low-density polyethylene (LDPE) polymeric samplers. Four laboratories exposed performance reference compound (PRC) preloaded polymers to actively mixed and static ex situ sediment for approximately 1 month; two laboratories had longer exposures (2 and 3 months). For Cfree results, intralaboratory precision was high for single compounds (coefficient of variation 50% or less), and for most PAHs and PCBs interlaboratory variability was low (magnitude of difference was a factor of 2 or less) across polymers and exposure methods. Variability was higher for the most hydrophobic PAHs and PCBs, which were present at low concentrations and required larger PRC-based corrections, and also for naphthalene, likely due to differential volatilization losses between laboratories. Overall, intra- and interlaboratory variability between methods (PDMS vs. LDPE, actively mixed vs. static exposures) was low. The results that showed Cfree polymer equilibrium was achieved in approximately 1 month during active exposures, suggesting that the use of PRCs may be avoided for ex situ analysis using comparable active exposure; however, such ex situ testing may not reflect field conditions. Polymer-derived Cfree concentrations for most PCBs and PAHs were on average within a factor of 2 compared with concentrations in isolated porewater, which were directly measured by one laboratory; difference factors of up to 6 were observed for naphthalene and the most hydrophobic PAHs and PCBs. The Cfree results were similar for academic and private sector laboratories. The accuracy and precision that we demonstrate for determination of Cfree using polymer sampling are anticipated to increase regulatory acceptance and confidence in use of the method. Environ Toxicol Chem 2022;41:1885-1902. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA

    Advancing the Use of Passive Sampling in Risk Assessment and Management of Sediments Contaminated with Hydrophobic Organic Chemicals: Results of an International Ex Situ Passive Sampling Interlaboratory Comparison Michiel T. O. Jonker*† , Stephan A. van der He

    Get PDF
    This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practical guidance for standardized passive sampling, and advance the use of passive sampling in regulatory decision making by increasing confidence in the use of the technique. The study was performed by a consortium of 11 laboratories and included experiments with 14 passive sampling formats on 3 sediments for 25 target chemicals (PAHs and PCBs). The resulting overall interlaboratory variability was large (a factor of ∼10), but standardization of methods halved this variability. The remaining variability was primarily due to factors not related to passive sampling itself, i.e., sediment heterogeneity and analytical chemistry. Excluding the latter source of variability, by performing all analyses in one laboratory, showed that passive sampling results can have a high precision and a very low intermethod variability (Advancing the Use of Passive Sampling in Risk Assessment and Management of Sediments Contaminated with Hydrophobic Organic Chemicals: Results of an International Ex Situ Passive Sampling Interlaboratory Comparison Michiel T. O. Jonker*† , Stephan A. van der HepublishedVersio

    Advancing the Use of Passive Sampling in Risk Assessment and Management of Sediments Contaminated with Hydrophobic Organic Chemicals : Results of an International Ex Situ Passive Sampling Interlaboratory Comparison

    No full text
    This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practical guidance for standardized passive sampling, and advance the use of passive sampling in regulatory decision making by increasing confidence in the use of the technique. The study was performed by a consortium of 11 laboratories and included experiments with 14 passive sampling formats on 3 sediments for 25 target chemicals (PAHs and PCBs). The resulting overall interlaboratory variability was large (a factor of ∼10), but standardization of methods halved this variability. The remaining variability was primarily due to factors not related to passive sampling itself, i.e., sediment heterogeneity and analytical chemistry. Excluding the latter source of variability, by performing all analyses in one laboratory, showed that passive sampling results can have a high precision and a very low intermethod variability (<factor of 1.7). It is concluded that passive sampling, irrespective of the specific method used, is fit for implementation in risk assessment and management of contaminated sediments, provided that method setup and performance, as well as chemical analyses are quality-controlled

    Advancing the Use of Passive Sampling in Risk Assessment and Management of Sediments Contaminated with Hydrophobic Organic Chemicals: Results of an International Ex Situ Passive Sampling Interlaboratory Comparison

    Get PDF
    This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practical guidance for standardized passive sampling, and advance the use of passive sampling in regulatory decision making by increasing confidence in the use of the technique. The study was performed by a consortium of 11 laboratories and included experiments with 14 passive sampling formats on 3 sediments for 25 target chemicals (PAHs and PCBs). The resulting overall interlaboratory variability was large (a factor of ∼10), but standardization of methods halved this variability. The remaining variability was primarily due to factors not related to passive sampling itself, i.e., sediment heterogeneity and analytical chemistry. Excluding the latter source of variability, by performing all analyses in one laboratory, showed that passive sampling results can have a high precision and a very low intermethod variability
    corecore