286 research outputs found

    Heterogeneous bubble nucleation dynamics

    Get PDF
    Heterogeneous nucleation is the most effective mechanism for the inception of phase transformation. Solid walls and impurities act as a catalyst for the formation of a new thermodynamic phase by reducing the activation energy required for a phase change, hence enhancing nucleation. The formation of vapour bubbles close to solid, ideally flat, walls is addressed here by exploiting a mesoscale description that couples diffuse interface modelling of the two-phase vapour-liquid system with fluctuating hydrodynamics, extending previous work by the authors on homogeneous nucleation. The technical focus of this work is to directly account for hydrophobic or hydrophilic walls through appropriate boundary conditions compliant with the fluctuation-dissipation balance, a crucial point in the context of fluctuating hydrodynamics theory. This methodology provides access to the complete dynamics of the nucleation process, from the inception of multiple bubbles up to their long-Time macroscopic expansion, on time and spatial scales unaffordable by standard techniques for nucleation, such as molecular dynamics. The analysis mainly focuses on the effect of wall wettability on the nucleation rate, and, albeit qualitatively in agreement with classical nucleation theory predictions, it reveals several discrepancies to be ascribed to layering effects in the liquid close to the boundary and to bubble-bubble interactions. In particular, it is found that, close to moderately hydrophilic surfaces, the most probable nucleation events occur away from the wall through a homogeneous mechanism

    A positivity-preserving scheme for fluctuating hydrodynamics

    Get PDF
    A finite-difference hybrid numerical method for the solution of the isothermal fluctuating hydrodynamic equations is proposed. The primary focus is to ensure the positivity-preserving property of the numerical scheme, which is critical for its functionality and reliability especially when simulating fluctuating vapour systems. Both cases of single- and two-phase flows are considered by exploiting the van der Waals' square-gradient approximation to model the fluid (often referred to as “diffuse-interface” model). The accuracy and robustness of the proposed scheme is verified against several benchmark theoretical predictions for the statistical properties of density, velocity fluctuations and liquid-vapour interface, including the static structure factor of the density field and the spectrum of the capillary waves excited by thermal fluctuations at interface. Finally, the hybrid scheme is applied to the challenging bubble nucleation process, and is shown to capture the salient features of the phenomenon, namely nucleation rate and subsequent bubble-growth dynamics

    A narrow band neutrino beam with high precision flux measurements

    Full text link
    The ENUBET facility is a proposed narrow band neutrino beam where lepton production is monitored at single particle level in the instrumented decay tunnel. This facility addresses simultaneously the two most important challenges for the next generation of cross section experiments: a superior control of the flux and flavor composition at source and a high level of tunability and precision in the selection of the energy of the outcoming neutrinos. We report here the latest results in the development and test of the instrumentation for the decay tunnel. Special emphasis is given to irradiation tests of the photo-sensors performed at INFN-LNL and CERN in 2017 and to the first application of polysiloxane-based scintillators in high energy physics.Comment: Poster presented at NuPhys2017 (London, 20-22 December 2017). 5 pages, 2 figure

    The ENUBET Beamline

    Full text link
    The ENUBET ERC project (2016-2021) is studying a narrow band neutrino beam where lepton production can be monitored at single particle level in an instrumented decay tunnel. This would allow to measure νμ\nu_{\mu} and νe\nu_{e} cross sections with a precision improved by about one order of magnitude compared to present results. In this proceeding we describe a first realistic design of the hadron beamline based on a dipole coupled to a pair of quadrupole triplets along with the optimisation guidelines and the results of a simulation based on G4beamline. A static focusing design, though less efficient than a horn-based solution, results several times more efficient than originally expected. It works with slow proton extractions reducing drastically pile-up effects in the decay tunnel and it paves the way towards a time-tagged neutrino beam. On the other hand a horn-based transferline would ensure higher yields at the tunnel entrance. The first studies conducted at CERN to implement the synchronization between a few ms proton extraction and a horn pulse of 2-10 ms are also described.Comment: Poster presented at NuPhys2018 (London 19-21 December 2018). 4 pages, 3 figure

    Original Data Vs High Performance Augmented Data for ANN Prediction of Glycemic Status in Diabetes Patients

    Get PDF
    In the following article a comparative analysis between Original Data (OD) and Augmented Data (AD) are carried out for the prediction of glycemic status in patients with diabetes. Specifically, the OD concerning the time series of the glycemic status of a patient are compared with AD. The AD are obtained by the randomised average with five different ranges, and are processed by a Machine Learning (ML) algorithm for prediction. The adopted ML algorithm is the Artificial Neural Network (ANN) Multilayer Perceptron (MLP). In order to optimise the prediction two different data partitioning scenarios selecting training datasets are analysed. The results show that the algorithm performances related to the use of AD through the randomisation of data in different ranges around the average value, are better than the OD data processing about the minimization of statistical errors in self learning models. The best achieved error decrease is of 75.4% if compared with ANN-MLP processing of the original dataset. Furthermore, in the paper is added a linked discussion about the economic and managerial impact of AD in the healthcare sector

    First Results from the TOTEM Experiment

    Full text link
    The first physics results from the TOTEM experiment are here reported, concerning the measurements of the total, differential elastic, elastic and inelastic pp cross-section at the LHC energy of s\sqrt{s} = 7 TeV, obtained using the luminosity measurement from CMS. A preliminary measurement of the forward charged particle η\eta distribution is also shown.Comment: Conference Proceeding. MPI@LHC 2010: 2nd International Workshop on Multiple Partonic Interactions at the LHC. Glasgow (UK), 29th of November to the 3rd of December 201

    Elastic Scattering and Total Cross-Section in p+p reactions measured by the LHC Experiment TOTEM at sqrt(s) = 7 TeV

    Full text link
    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at s=7\sqrt{s} = 7 TeV in special runs with the Roman Pot detectors placed as close to the outgoing beam as seven times the transverse beam size. The differential cross-section measurements are reported in the |t|-range of 0.36 to 2.5 GeV^2. Extending the range of data to low t values from 0.02 to 0.33 GeV^2,and utilizing the luminosity measurements of CMS, the total proton-proton cross section at sqrt(s) = 7 TeV is measured to be (98.3 +- 0.2(stat) +- 2.8(syst)) mb.Comment: Proceedings of the XLI International Symposium on Multiparticle Dynamics. Accepted for publication in Prog. Theor. Phy
    • …
    corecore