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A finite-difference hybrid numerical method for the solution of the isothermal fluctuating 
hydrodynamic equations is proposed. The primary focus is to ensure the positivity-
preserving property of the numerical scheme, which is critical for its functionality and 
reliability especially when simulating fluctuating vapour systems. Both cases of single-
and two-phase flows are considered by exploiting the van der Waals’ square-gradient 
approximation to model the fluid (often referred to as “diffuse-interface” model). The 
accuracy and robustness of the proposed scheme is verified against several benchmark 
theoretical predictions for the statistical properties of density, velocity fluctuations and 
liquid-vapour interface, including the static structure factor of the density field and the 
spectrum of the capillary waves excited by thermal fluctuations at interface. Finally, the 
hybrid scheme is applied to the challenging bubble nucleation process, and is shown to 
capture the salient features of the phenomenon, namely nucleation rate and subsequent 
bubble-growth dynamics.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Thermal fluctuations in fluids are ubiquitous in a wide spectrum of physical phenomena and technological applications. 
From activated processes such as bubble [1] and crystal nucleation [2] to thin-film [3], nano-thread instabilities [4], molec-
ular motors [5] and biological systems such as lipid membranes [6] and Brownian engines [7]. Thermal fluctuations play 
a central role in these systems by enabling energy-barrier crossing transitions, which in applications, such as nucleation, 
cannot be modelled by deterministic mean-field approaches.

The dynamical evolution of systems with thermal fluctuations is often studied via microscopic simulations such as molec-
ular dynamics (MD) or Monte Carlo (MC) methodologies, which naturally account for fluctuations. However, the enormous 
computational cost of having to resolve at least three degrees of freedom per particle, is a significant drawback of atomistic 
simulations, and despite drastic improvements in computational power, such simulations are still only applicable for small 
fluid volumes (typically few nm3). Moreover, atomistic approaches rely on the use of a thermostat [8] or barostat [9] which 
can be a major additional challenge, not yet fully resolved. For instance, in the presence of non-uniform shear, a global 
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thermostat such as Nosé-Hoover, can cause artificial effects, e.g. a non-uniform temperature distribution which in turn will 
set up thermally-driven motion of the particles.

More recently, continuum mechanics approaches embedding thermal fluctuations in the spirit of the Landau and Lifshitz’s 
fluctuating hydrodynamics (FH) [10] have attracted increasing interest for their potential in exploring large domains, but also 
long timescales with respect to particle methods. Indeed, FH has already been applied to several systems. Fluid behaviour
at the nanoscale including fluid-structure interactions [11] and ionic liquids [12], showing also good agreement with atom-
istic simulations [13], liquid-vapour systems [14], thermodiffusion in multi-component mixtures [15], homogeneous bubble 
nucleation [16,17] and boiling inception [18], are only a few applications of FH. However, the Landau and Lifshitz approach 
is mostly phenomenological and is not based on first principles: they intuitively added stochastic flux terms to the Navier-
Stokes (NS) equations where dissipation is expected, i.e. in the stress tensor, leading to a set of stochastic partial differential 
equations (SPDEs). Not surprisingly, there have been several efforts to obtain first-principle derivations of FH. One of the 
most well-known works is that of Kawasaki [19] and Dean [20]. Starting from a system of non-interacting Langevin equa-
tions, they formally derived a stochastic equation for the microscopic density field of a system of non-interacting Brownian 
particles (with Dean’s equation being the overdamped counterpart of the Kawasaki one). A formal derivation of the so-called 
Dean-Kawasaki (DK) model is given in Ref. [21] and a rigorous approach in Ref. [22].

Despite the considerable attention the DK model has received, it remains disconnected from the original Landau-Lifshitz 
formulation, and a common misconception in the literature is that it can be used to describe the evolution of macroscopic 
quantities. But in fact DK has never really left the Langevin realm. Hence there is a need to formalise the connection 
between DK and FH to enable the description of observable fields and remove the dependence on the (microscopic) Langevin 
equations. One way to do that is via dynamic density functional theory (DDFT), an extension of equilibrium statistical 
mechanics where the dynamic variation of a conserved variable is given by the gradient of a flux with an advective part 
proportional to the local flow velocity and a diffusive part proportional to the gradient of a free-energy functional. DDFT 
has gained much traction over the last few years with applications ranging from active media and crystallisation [2,23,24]
to complex fluids and molecular self-assembly [25,26]. Rigorous derivations have been proposed for both overdamped and 
inertial regimes, accounting for additional effects such as hydrodynamic interactions and particle anisotropy-orientation [27–
30]. A comprehensive review of DDFT is given in the recent article in Ref. [31]. In particular, a bottom-up systematic 
derivation of not only FH but also fluctuating DDFT (FDDFT) has been recently proposed in [32]: it provides a new first-
principle formulation that includes thermal fluctuations on the (mean-field) DDFT. Such derivation stays in tune with the 
early intuitive FH from Landau and Lifshitz, and alleviates the misconception mentioned earlier.

Accounting for fluctuations in non-equilibrium processes is central to all these approaches. In FH, the noise term is 
classically based on the assumptions of Gaussianity and small intensity (i.e. 

√〈δ f 2〉/〈 f 〉 � 1, with f the field under con-
sideration) around equilibrium conditions. Under these hypotheses, Landau & Lifshitz [10] stipulated an expression for the 
stochastic force, fst , in terms of a zero-mean and delta-correlated symmetric-and-traceless-tensor white noise, η,

fst = ∇ · τ̃ =
√

2kB Teqμeqη (1)

where kB , Teq , and μeq are the Boltzmann constant, the equilibrium temperature of the system and the dynamic viscosity of 
the fluid at equilibrium, respectively. This expression was later derived by enforcing the fluctuation-dissipation balance (FDB) 
[33], after linearising the NS equations around an equilibrium state. The common approach in dealing with nonequilibrium 
conditions makes use of the assumption that the correlations of the fluctuating fields obey a local-equilibrium version of 
the FDB [34]. This local-equilibrium approximation (LEA) is the usual way to proceed in nonequilibrium thermodynamics 
[35], where the equilibrium laws, like the equation of state (EOS) expressing the pressure as a function of density and 
temperature, p = p(ρ, T ), continue to hold for the locally defined fluid properties, p(x, t) = p(ρ(x, t), T (x, t)). It is worth 
noting that LEA is also involved in fundamental approaches like DDFT [36,37] (the essence of LEA in DDFT is the introduction 
of a frame of reference moving with the average velocity of the particles, so that in the moving frame the system appears 
at rest with each particle seeing all other particles as if at equilibrium [32]). Following the LEA, the stress-tensor correlation 
is obtained by substituting the local temperature, T (x, t), and viscosity, μ(x, t), in Eq. (1). A more refined derivation, makes 
use of projection operator techniques [38]. However, it does not provide information about force moments higher than the 
second, and hence unable to resolve the much debated issue of the Gaussian nature of the noise. An even more robust 
approach, starts from first principles and makes use of the Fokker-Planck equation (FPE) for the distribution function of 
the hydrodynamics fields [39–41]. It enables to take into account both fluctuations and nonlinearities in non-equilibrium 
conditions. The connection with the corresponding Langevin equations for the hydrodynamic fields was later obtained in 
[42].

As already highlighted, the noise contribution is obtained by enforcing the FDB. This is crucial when devising numerical 
schemes for the solution of SPDEs: the FDB must be reproduced also at the discrete level. In other words, the functional 
properties of the derivative operators (such as gradient, divergence, and Laplacian) must also be reproduced by their dis-
crete counterparts. For example, the identity ∇† = −∇·, stating that the adjoint of the gradient operator is equal to the 
negative divergence operator, must be guaranteed by the discrete versions of the gradient and divergence operators, G and 
D, respectively. Not surprisingly, the majority of previous research efforts have been dedicated to providing FDB-compliant 
algorithms. Finite-volume [43,44], finite-difference [45], and finite-element [46,47] approaches have been proposed. The 
performance of different time-integration schemes has been analysed in [48]. All these schemes faithfully reproduce the 
2
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statistical properties of the fluctuating fields. However, the stochastic forcing might cause unphysical negative densities or 
temperatures during the numerical evolution, causing blow-up of the solution [14]. This is particularly common when e.g. 
simulating rarefied vapour regions, or liquid-vapour systems at low temperatures. Adding to the numerical difficulties, over-
damped formulations are more prone to suffering from negative densities, compared to inertial descriptions. This is because 
in the former case the noise is contained in the density equation, the only equation for the system, while in the latter case 
the noise is in the momentum equation (which is coupled to the density equation). In a recent work [49], a finite-volume 
scheme was developed to overcome the challenge of preserving non-negative densities in overdamped equations with noise. 
At the heart of the scheme is a Brownian bridge technique that halves the time step every time a negative density is en-
countered, guaranteeing that the correct Brownian path is followed by respecting the values of the normal distributions in 
Eq. (1).

The need for positivity-preserving schemes has naturally emerged in the context of compressible fluids, where main-
taining accurate solutions of the Euler equations is a problem which is particularly acute for the case of rarefied vapours. 
Merely replacing the numerically negative density values by positive ones is not a remedy and does not enable stable nu-
merical solutions, less alone accurate ones. As a consequence, accurate and robust positivity-preserving schemes have been 
developed, such as the first-order schemes in Refs. [50,51]. More recently, a general framework for constructing arbitrarily 
high-order positivity-preserving discontinuous Galerkin, finite-volume and finite-difference schemes for the solution of the 
Euler equations has been proposed [52–54]. The extension to the compressible NS equations has also been considered in 
[55].

The case of fluctuating conservation laws has not been considered as of yet. A notable exception, however, is our recent 
effort in Ref. [49], albeit with a simplified model, an overdamped FDDFT, where momentum is adiabatically slaved to density. 
The present study goes a step further than our previous article and formulates a positivity-preserving numerical scheme for 
FH, both in single and two-phase systems (liquid-vapour). The scheme warrants the positivity of the density field throughout 
the dynamic evolution in practical experiments without relying on the Brownian bridge concept [49]. Density positivity is 
a crucial feature especially when simulating multiphase flows, and phase transition processes. Specifically, our scheme is 
a hybrid one combining upwind and central discretisations to take advantage of both the positivity-preserving property 
of the former and the FDB-compliance of the latter. The accuracy and robustness of this hybrid approach is validated 
against several benchmark cases, including analytical predictions, both in single and two phase systems. The structure of 
the algorithm is relatively simple without requiring evaluation of complex flux limiters and as a result it is computationally 
cheap and efficient.

§ 2 is devoted to the model equations for fluctuating fluid systems in both single and two-phase conditions; § 3 details 
the formulation of the hybrid numerical scheme, providing also proofs for the positivity-preserving property on the density 
field; § 4 focuses on numerical applications of the proposed scheme and compares the results against classical approaches, 
such as fully-central or fully-upwind ones. Finally, § 5 offers conclusions and discussions of extensions.

2. Governing equations

As discussed in the Introduction, FH was first introduced by Landau & Lifshitz [10] to describe weak fluctuations in 
fluids, strictly speaking at equilibrium, but later was extended to address the more complex non-equilibrium conditions 
[41,42], even in two-phase systems [56,57]. In what follows, we retrieve the basic equations describing the evolution of the 
density and momentum fields, under the simplifying hypothesis of isothermal flows, i.e. considering the temperature as an 
externally assigned parameter.

The general fluctuating conservation laws for mass and momentum read:

∂ρ

∂t
+ ∇ · (ρu) = 0 , (2)

∂ρu

∂t
+ ∇ · (ρu ⊗ u) = ∇ · τ + ∇ · τ̃ ,

with ρ the density, u the fluid velocity, τ the deterministic stress tensor, and τ̃ the stochastic stress tensor. The determinis-
tic stress tensor depends on the functional form of the free energy and can be derived by applying classical non-equilibrium 
thermodynamic principles, in particular requiring a non-negative entropy production [35]. This also allows to clearly distin-
guish between the reversible and irreversible contributions to the stress tensor. A linear constitutive law for the irreversible 
contribution provides the classical NS viscous stress tensor:

τ = τ rev + τ irr = τ rev + μ

(
∇u + ∇uT − 2

3
∇ · uI

)
, (3)

with μ the dynamic viscosity. It should be noted that the functional form of the NS viscous contribution has a gradient-flow 
structure and is conservative (under divergence). This is in contrast with FDDFT where there is exchange of momentum 
between the fluid particles and an external bath resulting in a non-conservative noise contribution [32] (except for the 
overdamped limit where momentum is adiabatically slaved to density).
3
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An appropriate equation of state (EoS) is used to reproduce the thermodynamic properties of the specific fluid. Usually, 
the EoS is given in terms of the local Helmholtz free energy f (ρ, T ), where T denotes the temperature. In the case of 
simple fluids

τ rev = −p I , (4)

with the pressure p = −∂ f /∂v|T = ρ2∂ f /∂ρ|T .
To describe a two-phase liquid-vapour system, the hypothesis of a local free energy is no more sufficient. In the general 

DFT approach [58], the free energy is approximated as a non-local functional of the spatially-dependent fluid density (one-
body position distribution), F [ρ(x)]. This functional, which typically consists of two parts, the free energy of an ideal fluid, 
Fid , and the excess-over-ideal free energy, enables to study structure in the fluid as well as global phase diagrams [59–63]. 
In this study, the van der Waals square-gradient approximation of the free-energy functional is adopted, often referred to as 
diffuse-interface (DI) model, which can be obtained from a truncated Taylor expansion of the DFT free-energy functional [64,
65]:

F [ρ, T ] =
ˆ

�

(
ρ f (ρ, T ) + λ

2
|∇ρ|2

)
dV , (5)

where the two terms, ρ f (ρ, T ) and (λ/2)|∇ρ|2, ensure the existence of a well-defined interface, and the capillary coeffi-
cient λ is related to the interfacial properties of the liquid-vapour system, namely surface tension and interface thickness. 
More specifically, the value of λ can be tuned to reproduce the surface-tension of the specific fluid under investigation, with 
a constant value sufficient to reproduce the temperature dependence of surface tension [57].

By using elements from non-equilibrium thermodynamics [35], the following expression for the reversible contribution 
of the stress tensor is obtained:

τ rev =
(

−p + λ

2
|∇ρ|2 + λρ∇2ρ

)
I − λ∇ρ ⊗ ∇ρ , (6)

the so-called Korteweg or capillary stress tensor for two-phase systems in the DI formulation, and comprising the effect of 
surface tension at the liquid-vapour interface. A detailed derivation of this object is provided in Appendix A for the reader’s 
convenience. The deterministic constitutive law for the stress tensor of the two-phase system (Eqs. (3), (6)) can be also 
framed in the context of other non-equilibrium thermodynamics frameworks, i.e. GENERIC [66,67].

The DI model has been shown to be able to capture the rich hydrodynamics of multiphase systems and associated 
complex phenomena, such as phase transformation, latent heat release, shock emission, and topological changes [68–70]. 
The square-gradient approximation has also been used successfully to describe multiphase systems at different levels of 
complexity including phase change, contact-line dynamics-spreading of droplets [71,72] and boiling [73]. However, let us 
highlight that the cornerstone of all these approaches are transport equations which are phenomenological and they repre-
sent conservation statements for the mass, momentum and energy; on the other hand DDFT and FDDFT are based on first 
principles and are fundamental.

As already highlighted in the Introduction, in the Landau-Lifshitz approach, the stochastic terms follow from the FDB. As 
a consequence, they will only depend on the explicit form of the irreversible contributions to the stress tensor. After some 
algebra, the stochastic stress tensor is expressed in terms of a delta-correlated white noise symmetric tensor η(x, t) with 
components

τ̃i j = √
2kB Tμ

[
ηi j − δi j

1

3
ηkk

]
, (7)

with kB the Boltzmann constant, δi j the Kronecker delta and with

〈ηi j(x, t)〉 = 0 , (8)

〈ηi j(x, t)ηi′ j′(x′, t′)〉 = (
δii′δ j j′ + δ ji′δi j′

)
δ(x − x′)δ(t − t′) (9)

(details of the derivation are given in [57]).
For the bulk free energy f (ρ, T ) we adopt the modified Benedict-Webb-Rubin EoS that reproduces well the thermo-

dynamic properties of a Lennard-Jones (LJ) fluid [74]. Dimensionless variables are defined as ρ∗ = ρ/ρr , T ∗ = T /Tr by 
employing the parameters of the LJ potential as reference quantities, i.e. σ = 3.4 × 10−10 m as length, ε = 1.65 × 10−21 J
as energy, m = 6.63 × 10−26 kg as mass and Tr = ε/kB as temperature. As a consequence, we have the following reference 
quantities for the density, velocity, time and pressure, respectively: ρr = m/σ 3, Vr = √

(ε/m), tr = σ/Vr and Pr = ε/σ 3. 
The non-dimensional capillary coefficient is chosen as λ∗ = λm2/(σ 5ε) = 5.224 to reproduce LJ values in a wide range of 
temperatures. To account for the viscosity variability due to the liquid-vapour density contrast and temperature, μ∗(ρ∗, T ∗), 
we chose the viscosity of an LJ fluid [75]. The dimensionless form of Eq. (2) finally reads
4
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∂ρ∗

∂t∗ + ∇∗ · (ρ∗u∗) = 0 , (10)

∂ρ∗u∗

∂t∗ + ∇∗ · (ρ∗u∗ ⊗ u∗) = ∇∗ ·
[(

−p∗ + λ∗

2
|∇∗ρ∗|2 + λ∗ρ∗∇∗2ρ∗

)
I − λ∗∇∗ρ∗ ⊗ ∇∗ρ∗

]

+∇∗ ·
[
μ∗

(
∇∗u∗ + ∇∗(u∗)T − 2

3
∇∗ · u∗ I

)]

+∇∗ ·
(√

2T ∗μ∗η̄
)

,

where η̄ is a non-dimensional symmetric, traceless and normal distributed noise tensor. For convenience, in what follows 
we drop the superstars.

3. Numerical method

Our numerical scheme is based on a finite-difference approximation on a staggered (or “MAC”) and uniform grid with 
spacing h. This means that scalar quantities are located at points (i, j, k) at the cell centre, while vectors are face-centred, 
placing the x-component at (i + 1/2, j, k) points, the y-component at (i, j + 1/2, k), and the z-component at (i, j, k + 1/2).

The use of a centred discretisation might require a strong limitation on the timestep, �t , in order to ensure the positivity 
of the density field. We provide a proof of this statement in the one-dimensional (1D) case by exploiting an explicit Euler 
temporal scheme. It is sufficient to look at the density equation, which is discretised as follows:

ρn+1
i = ρn

i − �t

h

(
ρun

i+1/2 − ρun
i−1/2

)
, (11)

where the superscript indicates the time instant and the subscript indicates the spatial location. It is evident that, given a 
positive density field at time tn , a sufficient condition to keep positivity is

�t <
hρn

i

|ρun
i+1/2 − ρun

i−1/2|
≤ h mini(ρ

n
i )

maxi(|ρun
i+1/2 − ρun

i−1/2|)
≤ h mini(ρ

n
i )

2 maxi(|ρun
i+1/2|)

, (12)

where the presence of the minimum density value at the numerator generates a strong timestep limitation, especially in 
conditions with small vapour densities.

A much better control of the sign of the density field is enabled by upwind schemes – see [76,77] and the references 
therein for upwind schemes and density positivity. However, the use of a staggered grid requires a slight modification with 
respect to classical co-located upwind schemes. We use the velocity as a primary variable, instead of the momentum. As a 
result, the velocity components are naturally face-centred, while the momenta, q̂ = (q̂x, q̂ y, q̂z)

T , at the same locations, are 
reconstructed from the velocity and density values. In 1D, our scheme follows as

ρn+1
i = ρn

i − �t

h

(
q̂x

n
i+1/2 − q̂x

n
i−1/2

)
. (13)

Let us analyse now two different reconstructions, namely, a cell-centred reconstruction (CR) and a first order upwind recon-
struction (UR):

q̂x
C R
i+1/2 = 1

2
ui+1/2(ρi + ρi+1) , (14)

q̂x
U R
i+1/2 =

{
ρiui+1/2 , ui+1/2 ≥ 0

ρi+1ui+1/2 , ui+1/2 < 0 .
(15)

When Eq. (14) is applied to Eq. (13), the following centred scheme is obtained

ρn+1
i =

[
1 − �t

2h

(
un

i+1/2 − un
i−1/2

)]
ρn

i − �tun
i+1/2

2h
ρn

i+1 + �tun
i−1/2

2h
ρn

i−1 , (16)

where the value of the density at the next timestep is expressed as a linear combination of previous values. A convex 
combination of previous density values would guarantee the sign of the density to remain positive throughout the evolution. 
However, in Eq. (16) the sign of the coefficients in the linear combination is controlled by the (unknown) sign of the 
velocities (un

i+1/2, u
n
i−1/2), hence a convex combination is not a-priori granted, and positivity-preserving is not ensured. This 

is especially apparent for the coefficients in front of ρn
i+1 and ρn

i−1. On the contrary, a convex combination with all positive 
coefficients, hence preserving positivity, occurs when we make use of Eq. (15), q̂ = q̂U R . This is proven for the case of 
positive velocities, but all the other cases follow straightforwardly. Under the hypothesis of velocity being positive, Eq. (13)
is rewritten as
5
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ρn+1
i =

(
1 − �tun

i+1/2

h

)
ρn

i + �tun
i+1/2

h
ρn

i−1 , (17)

which is a convex combination provided the CFL condition is satisfied

�t <
h

maxi(|un
i+1/2|)

. (18)

It should be emphasised that this condition is far less stringent compared to that in Eq. (12) and does not depend on the 
density field. However, despite its intriguing positivity-preserving property, the upwind discretisation adds artificial dissipa-
tion to the equations, thus violating the FDB, as pointed out in Refs. [48,49]. On the other hand, the central reconstruction 
reproduces the FDB at the discrete level, while strongly limiting the timestep to ensure positivity. A way forward is a hy-
brid scheme combining the useful features of the two approaches while at the same time reducing their disadvantages. In 
principle, the upwind reconstruction is only required in the most rarefied regions, where a large timestep might lead to the 
occurrence of negative density values. A similar hybrid scheme was proposed in [49] but for simpler case of the overdamped 
version of the system in Eq. (2) where the momentum is slaved to the density.

We start by proposing a simple flux limiter:

�(a,b) =
{

0 , min(a,b) < d

1 , min(a,b) ≥ d ,
(19)

where d plays the role of a threshold density value. With this definition, the hybrid reconstructed momentum reads

q̂x
HY
i+1/2 = �(ρi,ρi+1)q̂x

C R
i+1/2 + (1 − �(ρi,ρi+1)) q̂x

U R
i+1/2 . (20)

The basic idea is very simple: the flux limiter in Eq. (19) applies the central reconstruction when the densities in two 
neighbouring cells are both larger than the threshold value d, otherwise it enforces the upwind reconstruction. In the 
following section it will be shown that the proper choice of the threshold d can guarantee a minimum artificial dissipation, 
thus not drastically perturbing the FDB. We also illustrate the positivity preservation of the density with an affordable 
timestep via systematic numerical experiments.

The scheme is completed with the discretised version of the velocity equation. Here we adopted a centred approximation 
of all the derivatives, and centred interpolations of the fields where needed. In what follows we offer the explicit expression 
for the 1D case; the extension to the multidimensional case is straightforward. In 1D, the velocity equation reads

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= ∂

∂x

[
−p − λ

2

(
∂ρ

∂x

)2

+ λρ
∂2ρ

∂x2
+ 4

3
μ

∂u

∂x

]
+ ∂

∂x

(√
2TμW

)
, (21)

with W a normal distributed, delta-correlated in space and time, random field. The fully-discretised version, adopting the 
explicit forward Euler scheme, reads

un+1
i+1/2 − un

i+1/2

�t
= −un

i+1/2

2h

(
un

i+3/2 − un
i−1/2

)
+ 1

hρ̂n
i+1/2

[
−p(ρn

i+1) + p(ρn
i ) − λ

2(2h)2
(ρn

i+2 − ρn
i )2

+ λ

2(2h)2
(ρn

i+1 − ρn
i−1)

2 + λρn
i+1(ρ

n
i+2 − 2ρn

i+1 + ρn
i )

h2
− λρn

i (ρn
i+1 − 2ρn

i + ρn
i−1)

h2

]
+ (22)

+4μ(ρ̂n
i+1/2)

3h2ρ̂n
i+1/2

(
un

i+3/2 − 2un
i+1/2 + un

i−1/2

)
+ 4

3hρ̂n
i+1/2

(
μ(ρn

i+1) − μ(ρn
i )

) un
i+3/2 − un

i−1/2

2h

+ 1

hρ̂n
i+1/2

(√
2Tμ(ρn

i+1)W n
i+1 −

√
2Tμ(ρn

i )W n
i

)
,

where ρ̂n
i+1/2 = (ρn

i+1 + ρn
i )/2. Finally, in Eq. (22), {W n

i } is a set of independent normal distributed random numbers, gen-
erated at each time step by appropriately transforming a set of uniformly distributed numbers extracted with the Marsenne 
twister algorithm [78].

It is noteworthy that we proved the positivity-preserving property for the upwinding scheme by adopting an explicit 
forward-Euler temporal integration. However, as discussed in Ref. [52], the property is also maintained with higher order 
Runge-Kutta schemes, as the solution is a convex combination of Euler substeps. In this work, all numerical simulations are 
performed with a second-order, Runge-Kutta method, RK2, that provides better stability and temporal accuracy with respect 
to the first-order Euler scheme.
6
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Fig. 1. Variance of the fluctuating fields with the different schemes in a liquid at 〈ρ〉 = 0.6, T = 1.2. Left panel: variance of the density; Right panel: variance 
of the velocity. The values are normalised with the theoretical predictions.

4. Numerical applications

Here we provide tests of the hybrid numerical scheme developed in Sec. 3. More specifically, in subsection 4.1 we bench-
mark the equilibrium fluctuations in single-phase systems, liquid or vapour. In subsection 4.2 we compare the behaviour 
of the hybrid and of the fully-upwind schemes in reproducing the theoretical static structure factor of a capillary fluid de-
scribed with the DI model. Subsection 4.3 is devoted to the analysis of thermal capillary waves at the liquid-vapour interface. 
Finally, in subsection 4.4 we assess the robustness of the proposed hybrid scheme with the numerical simulation of vapour-
bubble nucleation. All numerical experiments are set in three-dimensional domains with periodic boundary conditions in 
all directions, with the exception of the simulations in subsec. 4.3 where a two-dimensional system is investigated.

4.1. Equilibrium fluctuations for a single-phase system

Analysis of fluctuations at equilibrium conditions is often used as a benchmark for the accuracy of numerical schemes in 
the context of FH modelling because theoretical predictions are available. In particular, for the case of a simple fluid without 
capillarity (λ = 0), the variance of the density and velocity fluctuations are compared with their theoretical counterparts

〈δρ2〉 = T 〈ρ〉
c2

T h3
, (23)

〈δu2〉 = T

〈ρ〉h3
, (24)

where c2
T = (∂ p/∂ρ)T is the isothermal speed of sound to be evaluated at density 〈ρ〉 and temperature T . It is worth noting 

that the symbol, 〈·〉, refers to the averaging operation against the probability-density function (PDF) of the fluctuating field. 
For example, the mean density is expressed as

〈ρ〉 =
ˆ

supp(ρ)

ρ P (ρ)dρ , (25)

where supp(ρ) and P (ρ) are the support and the PDF of the density field, respectively. In Fig. 1 we compare the fluctuations 
in a stable liquid at 〈ρ〉 = 0.6, T = 1.2, using a grid size h = 10 and a timestep �t = 0.1. In particular, the variance of the 
density field is numerically evaluated as

var(ρ) = 1

N

N∑
i=1

(ρi − 〈ρ〉)2 , (26)

with N the number of grid cells of the domain, relying on the statistical independency of the density values at the different 
locations. A similar expression is adopted to compute the numerical velocity variance. After a short transient, the variances 
reach a statistically stable value: the central scheme reproduces very well the expected variances, while the upwind scheme 
reveals a 10% error on the estimate of the density variance, and a smaller 3% error on the velocity variance. The hybrid 
7
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Fig. 2. Variance of the fluctuating fields with the different schemes in a vapour at 〈ρ〉 = 0.01, T = 1.2. Left panel: variance of the density; Right panel: 
variance of the velocity. The values are normalised with the theoretical predictions. The data for the central scheme are interrupted at time t = 140 when 
a negative density is observed.

scheme, set up with a threshold d = 0.1 corresponding to the saturation vapour density at T = 1.2, reproduces very well 
the variances and totally overlaps the central scheme results. In fact in liquid conditions very few cells might cross the 
threshold, hence the low-order upwind reconstruction is practically never exploited.

A more stringent test is depicted in Fig. 2, where the equilibrium fluctuations in a rarefied vapour at 〈ρ〉 = 0.01, T = 1.2
are analysed. Numerical integration is carried out by using h = 11 and a timestep �t = 0.1. Again, after a short transient, the 
central scheme reaches the expected density variance. However, at time t = 140, and the specific sample shown in the figure, 
negative densities are encountered and the simulation blows out. This behaviour has been observed, at different times, in 
all the statistically independent samples we analysed, and occurred even when reducing the timestep to �t = 10−4. Instead, 
the upwind scheme is able to follow the dynamics for long times, but the measured variance of the density fluctuations is 
55% smaller than the theoretical prediction.

Two different threshold values have been tested for the hybrid scheme. When using d = 0.005, corresponding to half 
the mean density, the error is only of the order of 10%; perfect agreement is obtained with d = 0.002 without the need of 
reducing the timestep. The velocity variance, on the right panel of Fig. 2, deserves a further comment. The theoretical value 
scales as 1/〈ρ〉 from Eq. (24), and reaches large values in rarefied vapour conditions, hence activating non-linear effects 
in the simulation. In these conditions the typical Landau-Lifshitz assumption of small fluctuations (i.e.

√〈δ f 2〉/〈 f 〉 � 1) is 
violated. As a consequence, the actual variances deviate from the expected theoretical values in Eq. (24) obtained through 
the linearised Landau-Lifshitz approach. In such cases the values of the variances obtained via FDB-compliant numerical 
simulations (central schemes) – fully taking into account any effect due to non-linearity – are more appropriate, and used 
here as the benchmark results instead of their theoretical counterpart. The hybrid scheme is then shown to be able to 
reproduce well the velocity variance with both threshold values we tested.

More detailed information concerning the statistical behaviour of the fluid fluctuations is provided by the PDFs. Gaussian 
distributions are expected for the cases where the typical fluctuations are smaller than the mean value: 

√〈δg2〉/〈g〉 � 1, 
for the generic field g . In Figs. 3-4 the PDFs in liquid and vapour conditions, respectively, are reported and the behaviour of 
the different schemes is compared. Again, the hybrid scheme reproduces well the expected Gaussian distributions.

4.2. Static structure factor of a capillary fluid

The static structure factor (SSF) of the density field, Sρ(k) = 〈 ˆδρ ˆδρ∗〉, where ˆδρ represents the Fourier transform of the 
density fluctuations, is another benchmark for the numerical schemes developed for FH. In the case of simple fluids (λ = 0), 
a constant SSF is expected due to the spatial delta-correlation of the density fluctuations. A more interesting – and stringent 
test – is the case of capillary fluids, where the density-gradient term in the free-energy functional activates spatial density 
correlations. As a result, a non-homogeneous SSF is expected. A theoretical prediction is available:

Sρ(k) = 〈ρ〉T

c2
T + λ〈ρ〉|k|2 , (27)

with a |k|−2 decay at large wavenumbers in the Fourier space (a detailed derivation is provided in Appendix C).
Fig. 5 reports the case of a capillary fluid in a liquid state at the thermodynamic condition T = 1.2, 〈ρ〉 = 0.75. The value 

of the nondimensional capillary coefficient is λ∗ = 5.2441, and the simulation is performed with a uniform grid, �x = �y =
8
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Fig. 3. PDFs, P (ρ , of the density (left panel) and the velocity (right panel) fields, in the same conditions as reported in Fig. 1.

Fig. 4. PDFs, P (ρ), of the density (left panel) and the velocity (right panel) fields, in the same conditions as reported in Fig. 2.

�z = 10. The SSF has been numerically evaluated by averaging one million statistically independent samples amounting 
to a quite expensive simulation. The left panel of the figure shows a slice in the plane of wavenumbers kx , ky , comparing 
the results obtained with the hybrid (top half of the figure) and with the upwind (bottom half) schemes. There is a clear 
difference between the two schemes. A more quantitative comparison against the theoretical prediction, Eq. (27), is reported 
in the right panel of the figure, showing Sρ as a function of |k|. The hybrid scheme matches very well the theoretical 
expectation, especially at the largest wavenumbers. It is worthwhile noticing, however, that the statistical convergence of 
the smallest wavenumbers (|k| < 0.05) would have required averaging over an even larger number of samples, because the 
largest fluid dynamics modes are characterised by slower convergence, in agreement with the literature [56].

To further evaluate the capabilities of our numerical scheme, we consider the case of a capillary fluid in a vapour state 
(at T = 1.2, 〈ρ〉 = 0.01). The results are reported in Fig. 6. In stark contrast with the liquid case, here the SSF measured 
with the upwind scheme is completely altered by the additional numerical dissipation, producing a faster decay at large 
wavenumbers. On the contrary, the hybrid scheme set up with the threshold value d = 0.002, is very robust and able to 
reproduce the theoretical structure factor fairly well.

4.3. Thermal capillary waves

Thus far we verified the robustness of the hybrid scheme in reproducing the statistical properties of single phase sys-
tems. Here we turn our attention to thermal capillary waves, common phenomena in the realm of two-phase liquid-vapour 
systems. Such systems are well captured by DI modelling because it captures the effect of capillarity at the liquid-vapour 
interface. More precisely, we focus on the evaluation of the statistical properties of the equilibrium fluctuations of a liquid-
9
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Fig. 5. SSF of the density fluctuations in a liquid at T = 1.2, 〈ρ〉 = 0.75, λ∗ = 5.2441, �x = �y = �z = 10. The left panel compares the results, in the kx-ky

plane, obtained with the hybrid (top half) and upwind (bottom half) schemes. The right panel plots the same data as a function of the wavenumber module 
|k| together with the theoretical prediction. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 6. SSF of the density fluctuations in a vapour at T = 1.2, 〈ρ〉 = 0.01, λ∗ = 5.2441, �x = �y = �z = 10. The left panel compares the results in the kx-ky

plane obtained with the hybrid (top half) and upwind (bottom half) schemes. The right panel plots the same data as a function of the wavenumber module 
|k| together with the theoretical prediction. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

vapour interface. This is fundamental problem, and has been thoroughly analysed in terms of the statistical properties of 
the vertical displacement of the interface, h(x) [14,79,80]. Capillary waves are in fact exited by thermal fluctuations and the 
spectrum of the interface displacement can be theoretically predicted from:

〈|h(|k|)|2〉 = kB T

σ |k|2 , (28)

where σ is the liquid-vapour surface tension (a complete derivation is given in Appendix C).
Here, we simulate a system with size 100 × 100 × 1 using a grid size �x = �y = �z = 6 and periodic boundary condi-

tions, initialised with a slab of liquid at T = 1.2 in equilibrium with the vapour. The saturation densities at this temperature 
correspond to ρL � 0.567, ρV � 0.1. It is worth noticing that, in this two-phase case, liquid and vapour states are actu-
ally required to be at equilibrium. This indeed follows from the requirement of equal pressure (and chemical potential) in 
two phases separated by the statistically flat interface. As a consequence, the system is initialised with the two regions at 
10
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Fig. 7. The capillary wave spectrum, |h(|k|)|2, obtained with the hybrid (d = 0.02) and the upwind schemes is compared with the theoretical prediction 
(dashed black line). The small inset shows one of the configurations of the system, with two corrugated liquid-vapour interfaces and the liquid slug almost 
at the centre.

the saturation liquid and vapour densities. In other words, we are not free to arbitrarily choose the density values in this 
case, as opposed to the previous sections where any stable vapour (ρ < ρV ) or liquid (ρ > ρL ) could be selected. The non-
dimensional capillary coefficient is λ∗ = 5.244. A set of 500 statistically independent samples, {hs(x)}, is used to obtain the 
average spectra. The left panel of Fig. 7 shows the comparison of the capillary waves spectra obtained with the upwind and 
the hybrid schemes using the threshold value d = 0.02 for the hybrid scheme. The spectra are plotted as a function of the 
modified wave number kmod = sin(k�x/2)/(�x/2) arising from the discretised version of the derivatives, as is commonly 
done in the literature [56]. In contrast with the hybrid scheme that perfectly reproduces the theoretical |k|−2 scaling, the 
upwind scheme shows a faster decay due to the extra numerical dissipation, mostly impacting the largest wave numbers, 
hence smaller scales, as occurred with the SSF in the vapour system (§ 4.2).

4.4. Homogeneous bubble nucleation

So far we focused on the characterisation of statistical equilibrium properties. On the contrary, here we test our scheme 
against the homogeneous vapour bubble nucleation, a strongly out-of-equilibrium process. This problem is at the heart of 
our physical understanding of phase transition processes and liquid metastability [81], and not surprisingly it poses the 
strong need for an efficient and reliable numerical scheme. Previous attempts [17,57] have been limited to high tempera-
tures, where the vapour density value is sufficiently high to reduce the possibility of blow-up in the simulations due to the 
occurrence of negative densities.

The full system of equations (10) is used, with the capillary coefficient λ∗ = 5.224 that reproduces the surface tension 
value of the LJ fluid. The domain is initialised with a homogeneous metastable liquid at 〈ρ〉 = 0.51, T = 1.2, while uniform 
grid with size �x = �y = �z = 10 and a timestep �t = 0.1 are used. Thermal fluctuations activate the phase transition and 
several vapour regions appear in the domain; only those larger than the critical size survive and expand further. There are 
two major quantities of interest: i) the nucleation rate, i.e. the number of bubbles formed per unit volume and unit time; 
ii) the expansion and coalescence bubble dynamics after the nucleation.

The time evolution of the number of vapour embryos, Nb , with a volume larger than three grid cells is reported in Fig. 8
depicting also the performance of the different schemes. Now there are no theoretical predictions and the central scheme 
results are used as benchmark. The time window with a linearly growing Nb is the one that characterises the so-called 
steady state nucleation, and allows to evaluate the nucleation rate as the slope of the curve Nb(t) [82]. It is apparent that 
the hybrid scheme reproduces perfectly the slope of the central scheme, independently on the density threshold d. On the 
contrary, the upwind scheme reveals a delay in bubble formation and a smaller nucleation rate. It is also worth noting that 
the central scheme is not able to follow the entire dynamics, because the bubble growth leads to very small density values; 
fluctuations in the vapour regions, then, unavoidably produce negative densities and the blow-up of the simulation.

The analysis of the bubble growth dynamics is made possible by means of the hybrid and of the upwind schemes, due 
to the positivity-preserving property. During this stage, the dynamics is characterised by bubble expansion and coalescence, 
thus progressively reducing the number of bubbles in the domain. As is evident from the figure however, the choice of the 
density threshold d influences the results: simulations with the upwind scheme and with the hybrid one set-up with a 
large d value, show a faster decrease of the number of bubbles. This, however, is a numerical artefact due to the undesirable 
numerical diffusion artificially introduced by these schemes. As a matter of fact, when reducing d, we observe convergence 
of the solution, with the results unaffected by a further decrease below d = 0.05.
11
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Fig. 8. Time evolution of the number of individual vapour bubbles nucleated in a metastable liquid at 〈ρ〉 = 0.51, T = 1.2. The data for the central scheme 
are interrupted at time t = 100 when a negative density is encountered.

5. Conclusions and discussion

We have developed an accurate, efficient and robust numerical scheme for solving the FH equations in both single and 
two-phase systems, enabling to preserve in practice the positivity of the density. The scheme is based on a hybrid approach, 
applied to the convective term in the density equation of FH, combining a centred finite-difference discretisation on a 
uniform staggered grid with a first-order upwind scheme. The conservative reconstruction of the momentum is performed 
by applying a simple but efficient flux limiter �, which discriminates whether the centred scheme or the upwind one is 
utilised, according to the density values of the neighbouring cells. In particular, upwinding is deployed only where the 
density is lower than a prescribed threshold d. The hybrid scheme takes advantage of the central approximation adopted 
in most of the grid cells. Notwithstanding the introduction of local sources of numerical dissipation where the upwind is 
applied, the hybrid scheme is shown to be accurate, efficient and robust, capable to globally preserve the correct statistical 
properties of the fluctuating fields.

The scheme was validated with several case studies while also performing well-known benchmark tests. Both single 
and two-phase systems, equilibrium and out-of-equilibrium conditions, have been analysed. It was found that the threshold 
value d could be critical in reproducing the expected result. However, as a rule of thumb, a threshold d ≤ ρV /5 (i.e. one fifth 
of the saturation vapour density in the case of two-phase flows, or one fifth of the initial vapour density in single-phase 
systems) reproduced the expected results in every single benchmark test. This value is sufficiently small not to introduce an 
appreciable amount of numerical dissipation, which in turn means that the scheme behaves globally as FDB-compliant, and 
– most importantly – warrants the positivity of the density without the need of reducing the timestep.

To further substantiate the practical validity of this empirical prescription, we performed a detailed convergence anal-
ysis investigating the density fluctuations in the low-density, stable vapour condition discussed in depth in Sec. 4.1. It is 
worthwhile to recall that a sound numerical convergence in stochastic equations should be understood in a statistical sense, 
i.e. weak convergence or convergence in probability. A common choice is to investigate convergence of the moments of 
the probability distribution, for example the second moment, i.e. the variance of the fluctuations. The FH theory provides a 
theoretical expected value for the density variance, Eq. (23), showing a scaling with the grid size as var(ρ) ∝ h−3. This is 
a common feature of SPDEs where intensive quantities diverge when the cell size shrinks to zero. As a matter of fact, the 
solution of SPDEs is intended in a distributional sense and as such it is not possible to achieve strong convergence with 
decreasing grid size. The physical interpretation is that the coarse graining procedure needed to derive the theory from the 
more fundamental atomistic model fails when the typical size of the coarse graining volume is of the order of the typical 
molecule size, the so-called “ultraviolet divergence” in statistical field theory [83].

Fig. 9 depicts the dependence of the density variance on the volume of the grid cell h3 and on the threshold parameter 
d. The solid black line depicts the FH theoretical prediction, Eq. (23), and the curves with symbols correspond to different 
values of the parameter d. At high values of d (a condition where the upwind reconstruction is often recalled by our hybrid 
flux limiter, Eqs. (19), (20)), the disruption of the FDB leads to a wrong scaling law of the density variance. This occurs at d
comparable with 〈ρ〉. Conversely, when d is reduced, we observe excellent agreement with the theoretical scaling h−3, with 
a weak convergence of the solution for roughly d < 〈ρ〉/5. These findings substantiate the validity and reliability of the rule 
of thumb we have proposed.

We believe that the simplicity of our computational framework, combined with its ease of implementation and computa-
tional efficiency, will pave the way for its deployment to a wide spectrum of two-phase flows with large density ratios, such 
12
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Fig. 9. Variance of the density fluctuations in the low-density, stable-vapour condition discussed in Sec. 4.1, as a function of the volume of the numerical 
grid cell. The solid black line represents the FH theoretical prediction. The other curves report the behaviour of our hybrid scheme at different values of 
the threshold parameter d as per legend. Excellent agreement with the theoretical scaling is obtained with d = 0.002 = 〈ρ〉/5.

as the liquid-vapour phase transitions at low temperatures which commonly lead to numerical instabilities. Of particular 
interest would also be extension of the scheme to non-isothermal cases, where the temperature field must remain positive, 
but also multi-component systems where the concentration is another positive quantity.
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Appendix A. Derivation of the Korteweg stress tensor

Here we retrace the derivation of the Korteweg stress tensor for an isothermal capillary fluid. The adopted procedure is 
framed in the context of non-equilibrium thermodynamics [35], and it has been exploited to derive the structure of ther-
modynamic fluxes in non-isothermal conditions [69], where the specific form of the thermodynamic fluxes is obtained by 
enforcing a positive entropy production (Clausius-Duhem inequality). Similarly, for an isothermal system, thermodynamically 
consistent constitutive relations for the stress tensor can be derived by imposing that the total free energy, the Hamilto-
nian of the system, H = F + K , must be a decreasing function of time, with F and K the Helmholtz and kinetic energies, 
respectively.

In the present case, the Hamiltonian reads:

H[ρ,u] =
ˆ

ρ

(
f (ρ, T ) + λ

2ρ
|∇ρ|2 + 1

2
u · u

)
dV . (A.1)
V
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The irreversible nature of viscous fluid motion enforces

dH
dt

=
ˆ

V

ρ
Dη

Dt
dV ≤ 0 , (A.2)

where η = f (ρ, T ) + λ/2ρ|∇ρ|2 + 1

2
u · u is the Hamiltonian density per unit mass, D/Dt = ∂/∂t + u · ∇ is the material 

derivative operator, and T is the temperature. To obtain an evolution equation for η we express the density and momentum 
equations in non-conservative form,

Dρ

Dt
= −ρ∇ · u , (A.3)

ρ
Du

Dt
= ∇ · τ ,

so that,

Dη

Dt
= ∂η

∂ρ

Dρ

Dt
+ ∂η

∂∇ρ
· D∇ρ

Dt
+ ∂η

∂u
· Du

Dt
. (A.4)

By substituting Eqs. (A.3) in the equation above and after some simple algebra, the entropy evolution equation reads

ρ
Dη

Dt
= 1

ρ

(
p0 − λ

2
|∇ρ|2

)
Dρ

Dt
+ λ∇ρ · D∇ρ

Dt
+ u · ∇ · τ , (A.5)

with the pressure p0 = ρ2(∂ f /∂ρ)T . To close the equation, the evolution of the density gradient is required. This can be 
evaluated by applying the gradient operator to Eq. (A.3) leading to

D∇ρ

Dt
= −∇ρ · ∇ ⊗ u − ∇ (ρ∇ · u) . (A.6)

As a result,

ρ
Dη

Dt
=

(
−p0 + λ

2
|∇ρ|2

)
∇ · u − λ∇ρ · ∇(ρ∇ · u) − λ∇ρ ⊗ ∇ρ : ∇ ⊗ u − u · ∇ · τ , (A.7)

and the time derivative of the Hamiltonian can be written as

dH
dt

=
ˆ

V

[(
−p0 + λ

2
|∇ρ|2 + λρ∇2ρ

)
I − λ∇ρ ⊗ ∇ρ − τ

]
: ∇ ⊗ u dV , (A.8)

where integration by parts has been applied on the second and last terms of the right-hand-side of Eq. (A.7).
The stress tensor τ can now be decomposed in two distinct parts, τ rev that does not dissipate energy, and τ irr corre-

sponding to viscous dissipation. The two contributions can then be identified as

τ rev =
(

−p0 + λ

2
|∇ρ|2 + λρ∇2ρ

)
I − λ∇ρ ⊗ ∇ρ , (A.9)

the Korteweg stress tensor, and the usual viscous stress

τ irr = μ

(
∇ ⊗ u + ∇ ⊗ uT − 2

3
∇ · uI

)
. (A.10)

Introducing the symmetric part of the velocity gradient, E = (∇ ⊗ u + ∇ ⊗ uT)/2, it is straightforward to verify that the 
Hamiltonian evolution is a decreasing function of time,

dH
dt

= −2μ

ˆ

V

Edev : Edev dV ≤ 0 , (A.11)

with Edev = E − 1/3∇ · u I the deviatoric part of the tensor E.
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Appendix B. Static correlation function of the fluctuating fields

The static correlation function (SSF) of a thermodynamic system in equilibrium with constant temperature T , given mass 
M and fixed volume V , can be evaluated from the deviation of the Hamiltonian, �H, from its equilibrium value, H0. For 
the single component system at equilibrium density ρ0, and equilibrium velocity u0 = 0, �H can be expressed as

�H[ρ,u] = H−H0 = �H [ρ,v] =
ˆ

V

ρ f (ρ, T ) + λ

2
|∇ρ|2 + 1

2
ρu · u − ρ f (ρ0, T ) dV , (B.1)

The probability distribution functional of the fluctuating fields � = (ρ, u) − (ρ0, 0) = (δρ, δu) follows from Einstein’s stipu-
lation,

Peq [�] = 1

Z
exp (−β �H) , (B.2)

with β = 1/(kB T ). The SSF can be thus evaluated by solving the path integral

C�(x) = 〈� ⊗ �†〉 = 1

Z

ˆ
D� � ⊗ �† exp (−β �H) . (B.3)

Assuming that the fluid is close to equilibrium, and the fluctuations are small with respect to the mean value, the Hamilto-
nian deviation, �H, can be approximated by a quadratic form in the fluctuating fields:

�H � 1

2

ˆ

V

(
c2

T 0

ρ0
δρ2 − λδρ∇2δρ + ρ0δu · δu

)
dV , (B.4)

where c2
T 0 = ∂ p0/∂ρ|T (ρ0, T ). This allows to approximate the actual non-Gaussian PDF (B.2) as

Peq [�] = 1

Z
exp

⎛
⎝−1

2
β

ˆ

V

�TH�dV

⎞
⎠ , (B.5)

where H is a diagonal positive-definite matrix, whose entries are

Hδρδρ = c2
T 0

ρ0
− λ∇2 (B.6)

Hδuδu = ρ0I (B.7)

with I the 2 × 2 identity matrix. The above PDF can be factorised as follows,

Peq[�] = Pδρ [δρ]Pδu[δu] , (B.8)

with

Pδρ [δρ] = 1

Zδρ
exp

⎛
⎝−1

2
β

ˆ

V

ˆ

V ′
dV dV ′δρ(r)Hδρδρδ(r − r′)δρ(r′)

⎞
⎠ ,

Pδu[δu] = 1

Zδu
exp

⎛
⎝−1

2
β

ˆ

V

ˆ

V ′
dV dV ′δuT(r)Hδuδuδ(r − r′)δu(r′)

⎞
⎠ , (B.9)

and with the normalization constant Z

Z =
ˆ

DδρDδu exp

⎛
⎝−1

2
β

ˆ

V

�TH�dV

⎞
⎠ = Zδρ Zδv . (B.10)

The correlation tensor (B.3) can be evaluated in closed form by integrating Gaussian path integrals. For this calculation it is 
instrumental to introduce the characteristic functional of the stochastic process. Given the PDF, P [x], of a generic stochastic 
scalar process x(r), the characteristic functional reads:

�[λ] =
ˆ

Dx P [x] exp

(ˆ
λ

(
r′) x

(
r′)dr′

)
. (B.11)

When considering the PDF of a Gaussian process
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P [x] = exp

(ˆ
−1

2
x(r)A(r, r′)x(r′)drdr′

)
,

the characteristic functional reduces to

�[λ] =
ˆ

Dx exp

(
−1

2

¨
drdr′ x (r) A

(
r, r′) x

(
r′) +

ˆ
λ (r) x (r)dr

)
(B.12)

that can be evaluated by completing the square as

�[λ] = �[0] exp

(
1

2

¨
drdr′ λ (r) G

(
r, r′) λ

(
r′)) , (B.13)

where

G
(
r, r′) = A−1 (

r, r′) . (B.14)

The two-point correlation is then written as

Cxx
(
r, r′) = 〈x (r) x

(
r′)〉 =

(
1

�[0]
δ

δλ (r′)
δ

δλ (r)
�[λ]

)
λ=0

= G
(
r, r′) . (B.15)

In the present multicomponent case the kernel of the operator A is given by

A
(
r, r′) = β Hδ

(
r − r′) , (B.16)

implying thatˆ
A(r, r′′)G

(
r′′, r′)dr′′ = β

ˆ
Hδ(r − r′′)G

(
r′′, r′)dr′′ = δ(r − r′) . (B.17)

In particular, since the matrix H is diagonal, the δρ δρ component of the above equation isˆ
Aδρδρ(r, r′′)Gδρδρ

(
r′′, r′)dr′′ = β

ˆ
Hδρδρδ(r − r′′)Gδρδρ

(
r′′, r′)dr′′ = δ(r − r′) , (B.18)

where the Dirac delta function on the right hand side is, clearly, the kernel of the identity operator. Given the expression of 
Hδρδρ , Eq. (B.6), the solution of Eq. (B.18) for Gδρδρ satisfies:(

c2
T

ρ0
− λ∇2

r

)
Gδρδρ

(
r, r′) = 1

β
δ
(
r − r′) . (B.19)

The solution of Eq. (B.19) is readily obtained by means of the Fourier transforms

δ
(
r − r′) =

+∞ˆ

−∞
exp

[− jk · (r − r′)] dk , (B.20)

Gδρδρ

(
r − r′) =

+∞ˆ

−∞
Ĝδρδρ(k)exp

[− jk · (r − r′)] dk , (B.21)

Therefore, the Green function Gδρδρ is easily evaluated in the Fourier space as,

Ĝδρδρ(k) = kB Tρ0

c2
T + λk · k

. (B.22)

The same procedure is used on the velocity component of the correlation tensor. After some algebra, the correlation tensor 
Ĉ� in Fourier space is given as follows:

Ĝ�(k) = Ĉ�(k) =

⎛
⎜⎜⎝

kB Tρ0

c2
T + λk · k

0

0
kB T

ρ0
I

⎞
⎟⎟⎠ . (B.23)

It is worth noticing that, in the Gaussian approximation, the velocity equilibrium correlations are delta-correlated in the 
physical space, while capillarity induces a correlation length in the density fluctuations. Finally, the cross-correlation of the 
fluctuating fields vanishes.
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Appendix C. Thermal fluctuations of liquid-vapour interfaces

As discussed in the previous Appendix, the SSF of a physical system is connected to the free energy of the system. In 
particular the probability of observing a specific system configuration is related exponentially to the free-energy deviation 
from the equilibrium value. Here we will describe the capillary-wave spectrum of a “statistically”-flat liquid-vapour interface. 
For that purpose we adopt a prototypical system consisting of a sharp (zero thickness) interface separating the liquid from 
its vapour phase. The interface can be described as a two-dimensional manifold � immersed in a three-dimensional space 
R3, whose Helmholtz free energy

F [�] = σ

ˆ

�

dS (C.1)

represents the Hamiltonian of the system, with σ the surface tension. To describe the fluctuating shape of the interface, it is 
useful to introduce the Monge representation of the manifold � through the height function h(x, y) : A ⊂R2 →R, so that 
dS = √

1 + ∇h · ∇h, where ∇ = (∂/∂x, ∂/∂ y). Under this particular parametrisation, the free-energy functional in Eq. (C.1)
takes the form

F [h] = σ

ˆ

A

√
1 + ∇h · ∇h da , (C.2)

with da = dxdy. For a statistically-flat interface, i.e. 〈h〉 = h0, the height function h can be decomposed as h = h0 + h′ . In 
addition, under the hypothesis of small undulations with respect to the interface extension, h′ <<

√
mis(A), the functional 

in Eq. (C.2) can be expanded as:

F
[
h′] = σ

ˆ

A

1 + 1

2
|∇h′|2 da . (C.3)

Then the free-energy deviation from the equilibrium value, F0 = σmis(A), is given from:

�F [h′] = 1

2
σ

ˆ

A

1

2
|∇h′|2 da = −1

2
σ

ˆ

A

h′∇2h′ da , (C.4)

and the PDF of the interface fluctuation becomes:

Peq
[
h′] = 1

Z
exp

(−β�F
[
h′]) . (C.5)

Equation (C.5) represents a Gaussian probability distribution whose correlation function reads (details are given in Ap-
pendix B)

〈h′(a)h′(a′)〉 = 1

Z

ˆ
Dh′ h′(a)h′(a′)exp

⎛
⎝−1

2

ˆ

A

ˆ

A′
dada′h′(a)�(a,a′)h′(a′)

⎞
⎠ = �−1(a,a′) , (C.6)

with a ∈ A a generic position in A and �(a, a′) = −σβ∇2δ(a − a′). To evaluate the inverse of �, i.e. the interface height 
correlation, we follow the same procedure adopted in Appendix B (see Eq. (B.18)) which yields:

ˆ
�(a,a′′)Ghh(a′′,a′)da′′ = δ(a − a′) , (C.7)

This is equivalent to identifying the Green function as

−σβ∇2Ghh(a,a′) = δ(a − a′) , (C.8)

which can be directly determined by applying the Fourier transform on both sides, leading to,

Ghh(k) = 〈h(k)h(−k)〉 = kB T
2

. (C.9)

σ |k|
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