9 research outputs found

    Accurate, uncertainty-aware classification of molecular chemical motifs from multi-modal X-ray absorption spectroscopy

    Full text link
    Accurate classification of molecular chemical motifs from experimental measurement is an important problem in molecular physics, chemistry and biology. In this work, we present neural network ensemble classifiers for predicting the presence (or lack thereof) of 41 different chemical motifs on small molecules from simulated C, N and O K-edge X-ray absorption near-edge structure (XANES) spectra. Our classifiers not only reach a maximum average class-balanced accuracy of 0.99 but also accurately quantify uncertainty. We also show that including multiple XANES modalities improves predictions notably on average, demonstrating a "multi-modal advantage" over any single modality. In addition to structure refinement, our approach can be generalized for broad applications with molecular design pipelines

    Crystallography companion agent for high-throughput materials discovery

    Get PDF
    The discovery of new structural and functional materials is driven by phase identification, often using X-ray diffraction (XRD). Automation has accelerated the rate of XRD measurements, greatly outpacing XRD analysis techniques that remain manual, time-consuming, error-prone, and impossible to scale. With the advent of autonomous robotic scientists or self-driving labs, contemporary techniques prohibit the integration of XRD. Here, we describe a computer program for the autonomous characterization of XRD data, driven by artificial intelligence (AI), for the discovery of new materials. Starting from structural databases, we train an ensemble model using a physically accurate synthetic dataset, which output probabilistic classifications -- rather than absolutes -- to overcome the overconfidence in traditional neural networks. This AI agent behaves as a companion to the researcher, improving accuracy and offering significant time savings. It was demonstrated on a diverse set of organic and inorganic materials characterization challenges. This innovation is directly applicable to inverse design approaches, robotic discovery systems, and can be immediately considered for other forms of characterization such as spectroscopy and the pair distribution function.Comment: For associated code, see https://github.com/maffettone/xc

    Self-driving Multimodal Studies at User Facilities

    Full text link
    Multimodal characterization is commonly required for understanding materials. User facilities possess the infrastructure to perform these measurements, albeit in serial over days to months. In this paper, we describe a unified multimodal measurement of a single sample library at distant instruments, driven by a concert of distributed agents that use analysis from each modality to inform the direction of the other in real time. Powered by the Bluesky project at the National Synchrotron Light Source II, this experiment is a world's first for beamline science, and provides a blueprint for future approaches to multimodal and multifidelity experiments at user facilities.Comment: 36th Conference on Neural Information Processing Systems (NeurIPS 2022). AI4Mat Worksho

    What is missing in autonomous discovery: Open challenges for the community

    Full text link
    Self-driving labs (SDLs) leverage combinations of artificial intelligence, automation, and advanced computing to accelerate scientific discovery. The promise of this field has given rise to a rich community of passionate scientists, engineers, and social scientists, as evidenced by the development of the Acceleration Consortium and recent Accelerate Conference. Despite its strengths, this rapidly developing field presents numerous opportunities for growth, challenges to overcome, and potential risks of which to remain aware. This community perspective builds on a discourse instantiated during the first Accelerate Conference, and looks to the future of self-driving labs with a tempered optimism. Incorporating input from academia, government, and industry, we briefly describe the current status of self-driving labs, then turn our attention to barriers, opportunities, and a vision for what is possible. Our field is delivering solutions in technology and infrastructure, artificial intelligence and knowledge generation, and education and workforce development. In the spirit of community, we intend for this work to foster discussion and drive best practices as our field grows

    Accurate, Uncertainty-Aware Classification of Molecular Chemical Motifs from Multimodal X‑ray Absorption Spectroscopy

    No full text
    Accurate classification of molecular chemical motifs from experimental measurement is an important problem in molecular physics, chemistry, and biology. In this work, we present neural network ensemble classifiers for predicting the presence (or lack thereof) of 41 different chemical motifs on small molecules from simulated C, N, and O K-edge X-ray absorption near-edge structure (XANES) spectra. Our classifiers not only achieve class-balanced accuracies of more than 0.95 but also accurately quantify uncertainty. We also show that including multiple XANES modalities improves predictions notably on average, demonstrating a “multimodal advantage” over any single modality. In addition to structure refinement, our approach can be generalized to broad applications with molecular design pipelines

    Deep learning for visualization and novelty detection in large X-ray diffraction datasets

    No full text
    We apply variational autoencoders (VAE) to X-ray diffraction (XRD) data analysis on both simulated and experimental thin-film data. We show that crystal structure representations learned by a VAE reveal latent information, such as the structural similarity of textured diffraction patterns. While other artificial intelligence (AI) agents are effective at classifying XRD data into known phases, a similarly conditioned VAE is uniquely effective at knowing what it doesn't know: it can rapidly identify data outside the distribution it was trained on, such as novel phases and mixtures. These capabilities demonstrate that a VAE is a valuable AI agent for aiding materials discovery and understanding XRD measurements both "on-the-fly" and during post hoc\textit {post hoc} analysis
    corecore