1,974 research outputs found

    DESIGN TOOLS FOR INFLATABLE STRUCTURES

    Get PDF
    This paper shows different tools and approaches that can be useful for the definition of the design of pneumatic structures. Some of these tools have been applied for the design of a Tensairity® hull

    Design tools for inflatable structures

    Get PDF
    This paper shows different tools and approaches that can be useful for the definition of the design of pneumatic structures. Some of these tools have been applied for the design of a Tensairity® hull

    Aplicação da dispersão da matriz em fase sólida (DMFS) na determinação residual de acaricidas em sangue bovino

    Get PDF
    A metodologia desenvolvida, DMFS-GC/MS, mostrou-se sensível, precisa e reprodutível, para analisar resíduos dos acaricidas cipermetrina, clorfenvinfos e fipronil em plasma bovino

    Risk-assessment algorithm and recommendations for venous thromboembolism prophylaxis in medical patients

    Get PDF
    The risk for venous thromboembolism (VTE) in medical patients is high, but risk assessment is rarely performed because there is not yet a good method to identify candidates for prophylaxis

    First Astronomical Use of Multiplexed Transition Edge Bolometers

    Get PDF
    We present performance results based on the first astronomical use of multiplexed superconducting bolometers. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer that achieved first light in June 2001 at the Caltech Submillimeter Observatory (CSO). FIBRE'S detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing 5 orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering Δλ/λ= 1/7 at a resolution of δλ/λ ≈ 1/1200 can be acquired. This spectral resolution is sufficient to resolve Doppler-broadened line emission from external galaxies. FIBRE operates in the 350 µm and 450 µm bands. These bands cover line emission from the important star formation tracers neutral carbon [Cl] and carbon monoxide (CO). We have verified that the multiplexed bolometers are photon noise limited even with the low power present in moderate resolution spectrometry

    Digital Quantum Simulation of the Statistical Mechanics of a Frustrated Magnet

    Full text link
    Many interesting problems in physics, chemistry, and computer science are equivalent to problems of interacting spins. However, most of these problems require computational resources that are out of reach by classical computers. A promising solution to overcome this challenge is to exploit the laws of quantum mechanics to perform simulation. Several "analog" quantum simulations of interacting spin systems have been realized experimentally. However, relying on adiabatic techniques, these simulations are limited to preparing ground states only. Here we report the first experimental results on a "digital" quantum simulation on thermal states; we simulated a three-spin frustrated magnet, a building block of spin ice, with an NMR quantum information processor, and we are able to explore the phase diagram of the system at any simulated temperature and external field. These results serve as a guide for identifying the challenges for performing quantum simulation on physical systems at finite temperatures, and pave the way towards large scale experimental simulations of open quantum systems in condensed matter physics and chemistry.Comment: 7 pages for the main text plus 6 pages for the supplementary material

    Molecular mechanism regulating myosin and cardiac functions by ELC

    Get PDF
    The essential myosin light chain (ELC) is involved in modulation of force generation of myosin motors and cardiac contraction, while its mechanism of action remains elusive. We hypothesized that ELC could modulate myosin stiffness which subsequently determines its force production and cardiac contraction. We therefore generated heterologous transgenic mouse (TgM) strains with cardiomyocyte-specific expression of ELC with human ventricular ELC (hVLC-1; TgM(hVLC-1)) or E56G-mutated hVLC-1 (hVLC-1(E56G); TgM(E56G)). hVLC-1 or hVLC-1(E56G) expression in TgM was around 39% and 41%, respectively of total VLC-1. Laser trap and in vitro motility assays showed that stiffness and actin sliding velocity of myosin with hVLC-1 prepared from TgM(hVLC-1) (1.67pN/nm and 2.3{my}m/s, respectively) were significantly higher than myosin with hVLC-1(E56G) prepared from TgM(E56G) (1.25pN/nm and 1.7{my}m/s, respectively) or myosin with mouse VLC-1 (mVLC-1) prepared from C57/BL6 (1.41 pN/nm and 1.5+-0.03 {my}m/s, respectively). Maximal left ventricular pressure development of isolated perfused hearts in vitro prepared from TgM(hVLC-1) (80.0mmHg) were significantly higher than hearts from TgM(E56G) (66.2mmHg) or C57/BL6 (59.3+-3.9 mmHg). These findings show that ELCs decreased myosin stiffness, in vitro motility, and thereby cardiac functions in the order hVLC-1 > hVLC-1(E56G) ≈ mVLC-1. They also suggest a molecular pathomechanism of cardiomyopathies caused by hVLC-1 mutations
    corecore