138 research outputs found

    Beitrag zum Problem über den Einflnss der Inhalation von mit CO(2) versetzter Luft auf verschiedene Symptome, die sicn bei Unterdruck einstellen

    Get PDF
    Im Jahre 1935 stellte Professor Dr. Oinuma mit seinem Kollegen bei der Besteigung des Fuji (3776 Meter uber dem Meeresspiegel) fest, dass die Inhalation von mit CO(2) versetzter Luft einen gunstigen Einfluss auf die Bergkrankheit ausubt. Wir stellten bezuglich dieses Punktes experimentelle Untersuchungen in der Unterdruckkammer unseres Laboratoriums an, unter Mithilfe unserer Kollegen als Versuchspersonen. Dabei wurden die Zusammensetzung und das Volumen der Expirationsluft, der Prozentsatz von O(2) und CO(2) der Alveolarluft (nach der Haldane'schen Methode), sowie auch die Gase im arteriellen Blut (nach der Slyke'schen Methode) gemessen. Die Resultate lassen sich folgendermassen zusammen fassen: 1) Bei allen Versuchspersonen tritt bei Unterdruck, infolge der Hyperventilation der Lunge, stets "Akapnie" ein, 2) Wird bei Unterdruck Luft eingeatmet, welcher CO(2) zugesetzt wurde, so nimmt die Atembewegung und der CO(2)- und der O(2)-gehalt der Expirationsluft und der Alveolarluft zu. Der respiratorische Quotient aber bleibt unverandert. Dies führt natürlich zu einer Zunahme des CO(2)- und O(2)-gehaltes im Blut. Diese Sauerstoffzunahme im Blut ubt demnach u. E. einen gunstigen Einfluss auf die verschiedenen Symptome aus, die unter vermindertem Luftdruck entstehen

    Energetic ion confinement studies using comprehensive neutron diagnostics in the Large Helical Device

    Get PDF
    Understanding energetic particle (EP) confinement is one of the critical issues in realizing fusion reactors. In stellarator/helical devices, the research on EP confinement is one of the key topics to obtain better confinement by utilizing the flexibility of a 3D magnetic field. A study of EP transport in the Large Helical Device (LHD) has been performed by means of escaping EP diagnostics in hydrogen plasma operation. By starting deuterium operation of the LHD, the confinement study of EPs has progressed remarkably using newly developed comprehensive neutron diagnostics providing information for EPs confined in the core region. The total neutron emission rate (Sn) increases due to the relatively low deviation of the beam ion orbit from the flux surface with the inward shift of the magnetic axis. The Sn has a peak around the electron density of 2  ×  1019 m−3 to 3  ×  1019 m−3, as predicted. It is found that the fraction of beam–beam components in Sn is evaluated to be approximately 20% by the Fokker–Planck models TASK/FP in the plasma with both co- and counter-neutral beam injections. The equivalent fusion gain in DT plasma achieved 0.11 in a negative-ion-based neutral beam heated plasma. Time evolution of Sn following the short pulse neutral beam injection into the electron–cyclotron-heated low-beta plasma is reproduced by drift kinetic simulation, indicating that transport of a beam ion injected by a short pulse neutral beam can be described with neoclassical models in magnetohydrodynamic quiescent low-beta plasmas. The vertical neutron camera works successfully, demonstrating that in the co-neutral beam-injected plasma, the neutron emission profile shifts according to the magnetic axis position. The shift of the neutron emission profile is reproduced by orbit-following models. The triton burnup study is performed for the first time in a stellarator/heliotron to understand the alpha particle confinement. It is found that the triton burnup ratio, which largely increases at inward-shifted configurations due to the better triton orbit and better plasma performance in the inward-shifted configuration, is similar to that measured in a tokamak having a similar minor radius to the LHD. We study the confinement capability of EPs toward a helical reactor in the magnetohydrodynamic quiescent region and expansion of the energetic ion physics study in toroidal fusion plasmas

    The expression of thymidine phosphorylase correlates with angiogenesis and the efficacy of chemotherapy using fluorouracil derivatives in advanced gastric carcinoma

    Get PDF
    The expression of thymidine phosphorylase (TP) and the density of microvessel in advanced gastric carcinoma were examined by immunohistochemistry to evaluate the significance of TP. The expression of TP was negative in 72 cases, positive in 54. The microvessel density correlated with the expression of TP. In total cases, patients with TP-positive tumours survived longer than those with TP-negative tumours. In patients treated with fluorouracil derivatives (FUs), the expression of TP significantly correlated with favourable prognosis and with unfavourable prognosis in those not treated with FUs. The patients with TP-positive tumours, the prognosis of patients treated with FUs was significantly better than that of those not treated with FUs. In patients with TP-positive tumours, treatment with FUs and lymph node metastasis were independent prognostic factors according to the Cox proportional hazards model. Depth of invasion and lymph node metastasis were independent prognostic factors in patients with TP-negative tumours. The determination of the expression of TP might be useful for predicting the efficacy of post-operative chemotherapy using FUs to prevent recurrence in advanced gastric carcinoma patients who undergo curative gastrectomy. © 1999 Cancer Research Campaig

    Total Aortic Arch Replacement: Superior Ventriculo-Arterial Coupling with Decellularized Allografts Compared with Conventional Prostheses.

    Get PDF
    BACKGROUND: To date, no experimental or clinical study provides detailed analysis of vascular impedance changes after total aortic arch replacement. This study investigated ventriculoarterial coupling and vascular impedance after replacement of the aortic arch with conventional prostheses vs. decellularized allografts. METHODS: After preparing decellularized aortic arch allografts, their mechanical, histological and biochemical properties were evaluated and compared to native aortic arches and conventional prostheses in vitro. In open-chest dogs, total aortic arch replacement was performed with conventional prostheses and compared to decellularized allografts (n = 5/group). Aortic flow and pressure were recorded continuously, left ventricular pressure-volume relations were measured by using a pressure-conductance catheter. From the hemodynamic variables end-systolic elastance (Ees), arterial elastance (Ea) and ventriculoarterial coupling were calculated. Characteristic impedance (Z) was assessed by Fourier analysis. RESULTS: While Ees did not differ between the groups and over time (4.1+/-1.19 vs. 4.58+/-1.39 mmHg/mL and 3.21+/-0.97 vs. 3.96+/-1.16 mmHg/mL), Ea showed a higher increase in the prosthesis group (4.01+/-0.67 vs. 6.18+/-0.20 mmHg/mL, P<0.05) in comparison to decellularized allografts (5.03+/-0.35 vs. 5.99+/-1.09 mmHg/mL). This led to impaired ventriculoarterial coupling in the prosthesis group, while it remained unchanged in the allograft group (62.5+/-50.9 vs. 3.9+/-23.4%). Z showed a strong increasing tendency in the prosthesis group and it was markedly higher after replacement when compared to decellularized allografts (44.6+/-8.3dyn.sec.cm-5 vs. 32.4+/-2.0dyn.sec.cm-5, P<0.05). CONCLUSIONS: Total aortic arch replacement leads to contractility-afterload mismatch by means of increased impedance and invert ventriculoarterial coupling ratio after implantation of conventional prostheses. Implantation of decellularized allografts preserves vascular impedance thereby improving ventriculoarterial mechanoenergetics after aortic arch replacement

    Cyr61/CCN1 Is Regulated by Wnt/β-Catenin Signaling and Plays an Important Role in the Progression of Hepatocellular Carcinoma

    Get PDF
    Abnormal activation of the canonical Wnt signaling pathway has been implicated in carcinogenesis. Transcription of Wnt target genes is regulated by nuclear β-catenin, whose over-expression is observed in Hepatocellular Carcinoma (HCC) tissue. Cyr61, a member of the CCN complex family of multifunctional proteins, is also found over-expressed in many types of tumor and plays dramatically different roles in tumorigenesis. In this study, we investigated the relationship between Cyr61 and β-catenin in HCC. We found that while Cyr61 protein was not expressed at a detectable level in the liver tissue of healthy individuals, its expression level was elevated in the HCC and HCC adjacent tissues and was markedly increased in cancer-adjacent hepatic cirrhosis tissue. Over-expression of Cyr61 was positively correlated with increased levels of β-catenin in human HCC samples. Activation of β-catenin signaling elevated the mRNA level of Cyr61 in HepG2 cells, while inhibition of β-catenin signaling reduced both mRNA and protein levels of Cyr61. We identified two TCF4-binding elements in the promoter region of human Cyr61 gene and demonstrated that β-catenin/TCF4 complex specifically bound to the Cyr61 promoter in vivo and directly regulated its promoter activity. Furthermore, we found that over-expression of Cyr61 in HepG2 cells promoted the progression of HCC xenografts in SCID mice. These findings indicate that Cyr61 is a direct target of β-catenin signaling in HCC and may play an important role in the progression of HCC

    Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions

    Get PDF
    Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main inhibitors derived from diverse raw material resultants from different biomass pretreatments, and describes the main mechanisms of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of sustainable yeast cell--based biorefineries.This study was supported by the Portuguese Foundation for Science and Technology (FCT) by the strategic funding of UID/BIO/04469/2013 unit, MIT Portugal Program (Ph.D. grant PD/BD/128247/ 2016 to Joana T. Cunha), Ph.D. grant SFRH/BD/130739/2017 to Carlos E. Costa, COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation (NORTE-01-0145-FEDER-000004), YeasTempTation (ERA-IB-2-6/0001/2014), and MultiBiorefinery project (POCI-01-0145-FEDER-016403). Funding by the Institute for Bioengineering and Biosciences (IBB) from FCT (UID/BIO/04565/2013) and from Programa Operacional Regional de Lisboa 2020 (Project N. 007317) was also receiveinfo:eu-repo/semantics/publishedVersio

    Voluntary Intake, Digestibility and Eating Behavior of Horses Fed Grass Silage

    No full text
    • …
    corecore