54 research outputs found

    Autophagy as a Therapeutic Target in Diabetic Nephropathy

    Get PDF
    Diabetic nephropathy is a serious complication of diabetes mellitus, and its prevalence has been increasing worldwide. Therefore, there is an urgent need to identify a new therapeutic target to prevent diabetic nephropathy. Autophagy is a major catabolic pathway involved in degrading and recycling macromolecules and damaged organelles to maintain intracellular homeostasis. The study of autophagy in mammalian systems is advancing rapidly and has revealed that it is involved in the pathogenesis of various metabolic or age-related diseases. The functional role of autophagy in the kidneys is also currently under intense investigation although, until recently, evidence showing the involvement of autophagy in the pathogenesis of diabetic nephropathy has been limited. We provide a systematic review of autophagy and discuss the therapeutic potential of autophagy in diabetic nephropathy to help future investigations in this field

    DISCOVERY OF PREVENTIVE DRUGS FOR CDDP-INDUCED AKI

    Get PDF
    Cisplatin is effective against many types of carcinoma. However, a high rate of renal damage is a clinical problem. Thus, there is a need to establish a method to prevent it. Although various compounds have been reported to be effective against cisplatin-induced renal injury, there are no examples of their clinical application. Therefore, we attempted to search for prophylactic agents with a high potential for clinical application. We used Cascade Eye to identify genes that are altered during cisplatin-induced renal injury, Library of Integrated Network-based Cellular Signatures (LINCS) to identify drugs that inhibit changes in gene expression, and a large database of spontaneous adverse drug reaction reports to identify drugs that could prevent cisplatin-induced kidney injury in clinical practice. In total, 10 candidate drugs were identified. Using the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS), we identified drugs that reduce cisplatin-induced kidney injury. Fenofibrate was selected as a candidate drug to prevent cisplatin-induced kidney injury based on the FAERS analysis. A model was used to evaluate the efficacy of fenofibrate against cisplatin-induced renal injury. Studies using HK2 cells and mouse models showed that fenofibrate significantly inhibited cisplatin-induced renal injury but did not inhibit the antitumor effect of cisplatin. Fenofibrate is a candidate prophylactic drug with high clinical applicability for cisplatin-induced renal injury. Analysis of data from multiple big databases will improve the search for novel prophylactic drugs with high clinical applicability. For the practical application of these findings, evaluation in prospective controlled trials is necessary

    Gene Therapy for Neuropathic Pain through siRNA-IRF5 Gene Delivery with Homing Peptides to Microglia.

    Get PDF
    Astrocyte- and microglia-targeting peptides were identified and isolated using phage display technology. A series of procedures, including three cycles of both in vivo and in vitro biopanning, was performed separately in astrocytes and in M1 or M2 microglia,yielding 50-58 phage plaques in each cell type. Analyses of the sequences of this collection identified one candidate homing peptide targeting astrocytes (AS1[C-LNSSQPS-C]) and two candidate homing peptides targeting microglia (MG1[C-HHSSSAR-C] and MG2[C-NTGSPYE-C]). To determine peptide specificity for the target cell in vitro, each peptide was synthesized and introduced into the primary cultures of astrocytes or microglia. Those peptides could bind to the target cells and be selectively taken up by the corresponding cell, namely, astrocytes, M1 microglia, or M2 microglia. To confirm cell-specific gene delivery to M1 microglia, the complexes between peptide MG1 and siRNA-interferon regulatory factor 5 were prepared and intrathecally injected into a mouse model of neuropathic pain. The complexes successfully suppressed hyperalgesia with high efficiency in this neuropathic pain model. Here, we describe a novel gene therapy for the treatment neuropathic pain, which has a high potential to be of clinical relevance. This strategy will ensure the targeted delivery of therapeutic genes while minimizing side effects to non-target tissues or cells

    Hyperglycemia Induces Skin Barrier Dysfunctions with Impairment of Epidermal Integrity in Non-Wounded Skin of Type 1 Diabetic Mice.

    Get PDF
    Diabetes causes skin complications, including xerosis and foot ulcers. Ulcers complicated by infections exacerbate skin conditions, and in severe cases, limb/toe amputations are required to prevent the development of sepsis. Here, we hypothesize that hyperglycemia induces skin barrier dysfunction with alterations of epidermal integrity. The effects of hyperglycemia on the epidermis were examined in streptozotocin-induced diabetic mice with/without insulin therapy. The results showed that dye leakages were prominent, and transepidermal water loss after tape stripping was exacerbated in diabetic mice. These data indicate that hyperglycemia impaired skin barrier functions. Additionally, the distribution of the protein associated with the tight junction structure, tight junction protein-1 (ZO-1), was characterized by diffuse and significantly wider expression in the diabetic mice compared to that in the control mice. In turn, epidermal cell number was significantly reduced and basal cells were irregularly aligned with ultrastructural alterations in diabetic mice. In contrast, the number of corneocytes, namely, denucleated and terminally differentiated keratinocytes significantly increased, while their sensitivity to mechanical stress was enhanced in the diabetic mice. We found that cell proliferation was significantly decreased, while apoptotic cells were comparable in the skin of diabetic mice, compared to those in the control mice. In the epidermis, Keratin 5 and keratin 14 expressions were reduced, while keratin 10 and loricrin were ectopically induced in diabetic mice. These data suggest that hyperglycemia altered keratinocyte proliferation/differentiation. Finally, these phenotypes observed in diabetic mice were mitigated by insulin treatment. Reduction in basal cell number and perturbation of the proliferation/differentiation process could be the underlying mechanisms for impaired skin barrier functions in diabetic mice

    GW501516, a PPARδ Agonist, Ameliorates Tubulointerstitial Inflammation in Proteinuric Kidney Disease via Inhibition of TAK1-NFκB Pathway in Mice

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are a nuclear receptor family of ligand-inducible transcription factors, which have three different isoforms: PPARα, δ and γ. It has been demonstrated that PPARα and γ agonists have renoprotective effects in proteinuric kidney diseases; however, the role of PPARδ agonists in kidney diseases remains unclear. Thus, we examined the renoprotective effect of GW501516, a PPARδ agonist, in a protein-overload mouse nephropathy model and identified its molecular mechanism. Mice fed with a control diet or GW501516-containing diet were intraperitoneally injected with free fatty acid (FFA)-bound albumin or PBS(−). In the control group, protein overload caused tubular damages, macrophage infiltration and increased mRNA expression of MCP-1 and TNFα. These effects were prevented by GW501516 treatment. In proteinuric kidney diseases, excess exposure of proximal tubular cells to albumin, FFA bound to albumin or cytokines such as TNFα is detrimental. In vitro studies using cultured proximal tubular cells showed that GW501516 attenuated both TNFα- and FFA (palmitate)-induced, but not albumin-induced, MCP-1 expression via direct inhibition of the TGF-β activated kinase 1 (TAK1)-NFκB pathway, a common downstream signaling pathway to TNFα receptor and toll-like receptor-4. In conclusion, we demonstrate that GW501516 has an anti-inflammatory effect in renal tubular cells and may serve as a therapeutic candidate to attenuate tubulointerstitial lesions in proteinuric kidney diseases

    Protective role of podocyte autophagy against glomerular endothelial dysfunction in diabetes.

    Get PDF
    To examine the cell-protective role of podocyte autophagy against glomerular endothelial dysfunction in diabetes, we analyzed the renal phenotype of tamoxifen (TM)-inducible podocyte-specific Atg5-deficient (iPodo-Atg5-/-) mice with experimental endothelial dysfunction. In both control and iPodo-Atg5-/- mice, high fat diet (HFD) feeding induced glomerular endothelial damage characterized by decreased urinary nitric oxide (NO) excretion, collapsed endothelial fenestrae, and reduced endothelial glycocalyx. HFD-fed control mice showed slight albuminuria and nearly normal podocyte morphology. In contrast, HFD-fed iPodo-Atg5-/- mice developed massive albuminuria accompanied by severe podocyte injury that was observed predominantly in podocytes adjacent to damaged endothelial cells by scanning electron microscopy. Although podocyte-specific autophagy deficiency did not affect endothelial NO synthase deficiency-associated albuminuria, it markedly exacerbated albuminuria and severe podocyte morphological damage when the damage was induced by intravenous neuraminidase injection to remove glycocalyx from the endothelial surface. Furthermore, endoplasmic reticulum stress was accelerated in podocytes of iPodo-Atg5-/- mice stimulated with neuraminidase, and treatment with molecular chaperone tauroursodeoxycholic acid improved neuraminidase-induced severe albuminuria and podocyte injury. In conclusion, podocyte autophagy plays a renoprotective role against diabetes-related structural endothelial damage, providing an additional insight into the pathogenesis of massive proteinuria in diabetic nephropathy

    Ketone bodies : A double-edged sword for mammalian life span.

    Get PDF
    Accumulating evidence suggests health benefits of ketone bodies, and especially for longevity. However, the precise role of endogenous ketogenesis in mammalian life span, and the safety and efficacy of the long-term exogenous supplementation of ketone bodies remain unclear. In the present study, we show that a deficiency in endogenous ketogenesis, induced by whole-body Hmgcs2 deletion, shortens life span in mice, and that this is prevented by daily ketone body supplementation using a diet containing 1,3-butanediol, a precursor of β-hydroxybutyrate. Furthermore, feeding the 1,3-butanediol-containing diet from early in life increases midlife mortality in normal mice, but in aged mice it extends life span and prevents the high mortality associated with atherosclerosis in ApoE-deficient mice. By contrast, an ad libitum low-carbohydrate ketogenic diet markedly increases mortality. In conclusion, endogenous ketogenesis affects mammalian survival, and ketone body supplementation may represent a double-edged sword with respect to survival, depending on the method of administration and health status

    Malfunctioning CD106-positive, short-term hematopoietic stem cells trigger diabetic neuropathy in mice by cell fusion.

    Get PDF
    Diabetic neuropathy is an incurable disease. We previously identified a mechanism by which aberrant bone marrow-derived cells (BMDCs) pathologically expressing proinsulin/TNF-α fuse with residential neurons to impair neuronal function. Here, we show that CD106-positive cells represent a significant fraction of short-term hematopoietic stem cells (ST-HSCs) that contribute to the development of diabetic neuropathy in mice. The important role for these cells is supported by the fact that transplantation of either whole HSCs or CD106-positive ST-HSCs from diabetic mice to non-diabetic mice produces diabetic neuronal dysfunction in the recipient mice via cell fusion. Furthermore, we show that transient episodic hyperglycemia produced by glucose injections leads to abnormal fusion of pathological ST-HSCs with residential neurons, reproducing neuropathy in nondiabetic mice. In conclusion, we have identified hyperglycemia-induced aberrant CD106-positive ST-HSCs underlie the development of diabetic neuropathy. Aberrant CD106-positive ST-HSCs constitute a novel therapeutic target for the treatment of diabetic neuropathy

    Crystal structure of an RtcB homolog protein (PH1602-extein protein) fromPyrococcus horikoshii reveals a novel fold

    Get PDF
    The hypothetical extein, PH1602-extein (53.5 kDa, 481 residues) from the hyperthermophilic archaebacterium, Pyrococcus horikoshii OT3, shows sequence similarity to Escherichia coli RtcB (33% identity). RtcB homologs are conserved in all archaebacteria, in most eukaryotes, including metazoa, and in a wide variety of eubacteria. In E. coli, the rtcB gene, together with rtcA and rtcR, comprise the 54-dependent operon termed the RNA 3-terminal phosphate cyclase operon. The functions of the gene products RtcA and RtcR have been characterized previously as RNA 3-terminal phosphate cyclase and 54-specific regulator, respectively. On the other hand, although RtcB is highly conserved among many organisms, there have been few studies of RtcB and its homologs. In a previous study, it was suggested that human RtcB homolog may form a heterotrimer with DDX1 (putative RNA helicase) and CGI-99 (ninein-interaction protein). These three proteins were pulled down by double-stranded DNA fragments. The artificial DNA sequences included an 11-bp inverted repeat, thus enabling formation of a cruciform structure. The manner of interaction between the presumptive trimer and double-stranded DNA has not been clarified. Sequence analysis indicated that the ph1602 gene encodes an RtcB homolog with an intervening intein. Thus, translation products of ph1602 are considered to generate two mature proteins, PH1602-intein and PH1602-extein, because of the protein-splicing activity of the intein. We cloned the extein sequence of PH1602 and successfully overexpressed, purified, and crystallized the PH1602-extein. Here, we report the crystal structure of PH1602-extein at 2.15 Å resolution, determined by the single-wavelength anomalous diffraction (SAD) method

    Crystal structure of A-type ATP synthase catalytic nucleotide-binding subunit A from Pyrococcus horikoshii reveals a novel domain related in the

    Get PDF
    H+-transporting ATP synthase is a multi-subunit enzyme involved in the production of ATP, which is essential molecule for living organisms as a source of energy. Archaeal A-type ATPase (A-ATPase) is thought to act as a functional ATP synthase in Archaea and is thought to have chimeric properties of F-ATPase and V-ATPase. From the previous structural studies of F-ATPase, it is indicated that the major nucleotide-binding subunits α and β consist of three domains. The catalytic nucleotide-binding subunit A of V/A-ATPase contains an insertion of about 90 residues, which is absent from the F1-β subunit. Here we describe the first X-ray structure of the catalytic nucleotide-binding subunit A of the A1-ATPase determined at 2.55 Å resolution. A1-ATPase subunit A from Pyrococcus horikoshii consists of four domains. A novel domain, including a part of this insertion, corresponds to the “knob-like structure” observed in electron microscopy of A1-ATPase. Based on the structure, it is highly likely that this inserted domain is related to the peripheral stalk common to the A- and V-ATPases. The arrangement of this inserted domain suggests that this region plays an important role in A-ATPase as well as in V-ATPase
    corecore