15,539 research outputs found
Microstructure of co-evaporated CoCr films with perpendicular anisotropy
Coevaporation of Co and Cr is applied to achieve good magnetic characteristics of media deposited at low temperature. The opposed oblique incidence vapor flux induces a columnar alignment parallel to the evaporation plane. Further, a process-induced segregation is present which introduces separated Co-rich and Cr-rich regions. A selective etching process is carried out to find proof of this. With increasing process temperature, nonelongated columns develop. The columnar axes are inclined towards the Co source at a smaller angle than the angle of incidence. The texture axes are also inclined, as are the anisotropy axes. The process-induced segregation results in an enhanced coercivity and saturation magnetization. A small in-plane anisotropy coincides with the direction of columnar alignment. At a higher process temperature, the column, texture, and anisotropy axis tilting decrease
Soft inflation
The cosmology resulting from two coupled scalar fields was studied, one which is either a new inflation or chaotic type inflation, and the other which has an exponentially decaying potential. Such a potential may appear in the conformally transformed frame of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints necessary for successful inflation are examined. Conventional GUT models such as SU(5) were found to be compatible with new inflation, while restrictions on the self-coupling constant are significantly loosened for chaotic inflation
Melting Crystal, Quantum Torus and Toda Hierarchy
Searching for the integrable structures of supersymmetric gauge theories and
topological strings, we study melting crystal, which is known as random plane
partition, from the viewpoint of integrable systems. We show that a series of
partition functions of melting crystals gives rise to a tau function of the
one-dimensional Toda hierarchy, where the models are defined by adding suitable
potentials, endowed with a series of coupling constants, to the standard
statistical weight. These potentials can be converted to a commutative
sub-algebra of quantum torus Lie algebra. This perspective reveals a remarkable
connection between random plane partition and quantum torus Lie algebra, and
substantially enables to prove the statement. Based on the result, we briefly
argue the integrable structures of five-dimensional
supersymmetric gauge theories and -model topological strings. The
aforementioned potentials correspond to gauge theory observables analogous to
the Wilson loops, and thereby the partition functions are translated in the
gauge theory to generating functions of their correlators. In topological
strings, we particularly comment on a possibility of topology change caused by
condensation of these observables, giving a simple example.Comment: Final version to be published in Commun. Math. Phys. . A new section
is added and devoted to Conclusion and discussion, where, in particular, a
possible relation with the generating function of the absolute Gromov-Witten
invariants on CP^1 is commented. Two references are added. Typos are
corrected. 32 pages. 4 figure
Creation of the universe with a stealth scalar field
The stealth scalar field is a non-trivial configuration without any
back-reaction to geometry, which is characteristic for non-minimally coupled
scalar fields. Studying the creation probability of the de Sitter universe with
a stealth scalar field by the Hartle and Hawking's semi-classical method, we
show that the effect of the stealth field can be significant. For the class of
scalar fields we consider, creation with a stealth field is possible for a
discrete value of the coupling constant and its creation probability is always
less than that with a trivial scalar field. However, those creation rates can
be almost the same depending on the parameters of the theory.Comment: 7 pages; v2, references added; v3, creation of the open universe
adde
Domain Wall Dynamics in Brane World and Non-singular Cosmological Models
We study brane cosmology as 4D (4-dimensional) domain wall dynamics in 5D
bulk spacetime. For a generic 5D bulk with 3D maximal symmetry, we derive the
equation of motion of a domain wall and find that it depends on mass function
of the bulk spacetime and the energy-momentum conservation in a domain wall is
affected by a lapse function in the bulk. Especially, for a bulk spacetime with
non-trivial lapse function, energy of matter field on the domain wall goes out
or comes in from the bulk spacetime. Applying our result to the case with SU(2)
gauge bulk field, we obtain a singularity-free universe in brane world
scenario, that is, not only a big bang initial singularity of the brane is
avoided but also a singularity in a 5D bulk does not exist.Comment: 12 pages, 11 figures, submitted to PRD. One reference is added. (v2
Exact Analysis of ESR Shift in the Spin-1/2 Heisenberg Antiferromagnetic Chain
A systematic perturbation theory is developed for the ESR shift and is
applied to the spin-1/2 Heisenberg chain. Using the Bethe ansatz technique, we
exactly analyze the resonance shift in the first order of perturbative
expansion with respect to an anisotropic exchange interaction. Exact result for
the whole range of temperature and magnetic field, as well as asymptotic
behavior in the low-temperature limit are presented. The obtained g-shift
strongly depends on magnetic fields at low temperature, showing a significant
deviation from the previous classical result.Comment: 4 pages, 3 figures,to be published in Phys. Rev. Let
Predation and Parasitism of the Kamehameha Butterfly (Vanessa tameamea) on Oahu Island.
M.S. Thesis. University of Hawaiʻi at Mānoa 2017
Discrete derivatives and symmetries of difference equations
We show on the example of the discrete heat equation that for any given
discrete derivative we can construct a nontrivial Leibniz rule suitable to find
the symmetries of discrete equations. In this way we obtain a symmetry Lie
algebra, defined in terms of shift operators, isomorphic to that of the
continuous heat equation.Comment: submitted to J.Phys. A 10 Latex page
- …