15,085 research outputs found

    Viscosity of gauge theory plasma with a chemical potential from AdS/CFT correspondence

    Full text link
    We compute the strong coupling limit of the shear viscosity for the N=4 super-Yang-Mill theory with a chemical potential. We use the five-dimensional Reissner-Nordstrom-anti-deSitter black hole, so the chemical potential is the one for the R-charges U(1)_R^3. We compute the quasinormal frequencies of the gravitational and electromagnetic vector perturbations in the background numerically. This enables one to explicitly locate the diffusion pole for the shear viscosity. The ratio of the shear viscosity eta to the entropy density s is eta/s=1/(4pi) within numerical errors, which is the same result as the one without chemical potential.Comment: 11 pages, 5 figures, ReVTeX4; v2: minor improvements; v3: explanations added and improved; v4: version to appear in PR

    Gas Enrichment at Liquid-Wall Interfaces

    Get PDF
    Molecular dynamics simulations of Lennard-Jones systems are performed to study the effects of dissolved gas on liquid-wall and liquid-gas interfaces. Gas enrichment at walls is observed which for hydrophobic walls can exceed more than two orders of magnitude when compared to the gas density in the bulk liquid. As a consequence, the liquid structure close to the wall is considerably modified, leading to an enhanced wall slip. At liquid-gas interfaces gas enrichment is found which reduces the surface tension.Comment: main changes compared to version 1: flow simulations are included as well as different types of gase

    Efeito da mistura de lodo celulósico com cinza de biomassa de madeira no desenvolvimento de Pinus taeda L.

    Get PDF
    Editores técnicos: Marcílio José Thomazini, Elenice Fritzsons, Patrícia Raquel Silva, Guilherme Schnell e Schuhli, Denise Jeton Cardoso, Luziane Franciscon. EVINCI. Resumos

    Robust and Scalable Scheme to Generate Large-Scale Entanglement Webs

    Get PDF
    We propose a robust and scalable scheme to generate an NN-qubit WW state among separated quantum nodes (cavity-QED systems) by using linear optics and postselections. The present scheme inherits the robustness of the Barrett-Kok scheme [Phys. Rev. A {\bf 71}, 060310(R) (2005)]. The scalability is also ensured in the sense that an arbitrarily large NN-qubit WW state can be generated with a quasi-polynomial overhead 2O[(log2N)2]\sim 2^{O[(\log_2 N)^2]}. The process to breed the WW states, which we introduce to achieve the scalability, is quite simple and efficient, and can be applied for other physical systems.Comment: 5 pages, 3 figure

    Radiation from an accelerated quark via AdS/CFT

    Full text link
    In this paper we investigate radiation by an accelerated quark in a strongly coupled gauge theory via AdS/CFT correspondence. According to AdS/CFT dictionary, we can read off energy density or energy flux of the radiation from asymptotic gravitational field in AdS bulk sourced by an accelerated string trailing behind the quark. In the case of an oscillating quark with frequency Ω\Omega, we show that the time averaged energy density is asymptotically isotropic and it falls off as (gYM2N)1/2Ω4/R2(g_{\text{YM}}^2 N)^{1/2} \Omega^4/R^{2} with distance RR from the source. In a toy model of a scattered quark by an external field, we simply estimate Poynting vector by the bremsstrahlung radiation and show that the energy flux is anisotropic outgoing radiation. Based on these investigations, we discuss the properties of strongly coupled gauge theory radiation in comparison with electromagnetic radiation.Comment: 16 pages, no figures, accepted for publication in Phys. Rev.

    Effect of Transient Changes of Air Temperature on Subjective Response of Office Worker in Tropical Country (Case Study: Jakarta, Indonesia)

    Get PDF
    Moderately cold indoor air temperature among offices in hot–humid country caused a sudden change of experienced air temperature when worker went out for a short time and returned to a moderately cold office. Thought that extreme changes of air temperature induced disruption for body thermoregulation and reduced thermal comfort. Current study aimed to investigate thermal comfort and perceived arousal toward mild transient change of air temperature in two actual offices with airconditioning system in Jakarta, Indonesia. Participants in each office were grouped into workers who experienced transient state of temperature (TS) and workers who stayed indoor and experienced only steady-state conditions (SS). Thermal conditionssurrounding 16 transient state participants were recorded at 5-minutes intervals using data logger from 10:00 to 17:00. Transient state participants went out and were exposed to outdoor temperature for approximately 1 hour at lunch time. The difference of mean air temperature between indoor and outdoor reached 8.49∘C and4.50∘C for office A and B, respectively. Subjective votes indicating thermal sensation, thermal comfort, thermal satisfaction, alertness, freshness, and concentration were obtained from the total of 43 participants. Significant negative correlation found between changes of temperature and thermal sensation, thermal comfort, but not on thermal satisfaction. A tendency of decreased alertness, freshness, and concentration were observed among transient state participants of Office A, but was not observed in steady state participant of Office A and in both subject groups in Office B. These findings suggest that transient change of air temperature would lower arousal level in a more extreme temperature change. Keywords: transient change temperature, arousal, workplace, subjective vot

    Nebular Spectra of SN 1998bw Revisited: Detailed Study by One and Two Dimensional Models

    Full text link
    Refined one- and two-dimensional models for the nebular spectra of the hyper-energetic Type Ic supernova (SN) 1998bw, associated with the gamma-ray burst GRB980425, from 125 to 376 days after B-band maximum are presented. One dimensional, spherically symmetric spectrum synthesis calculations show that reproducing features in the observed spectra, i.e., the sharply peaked [OI] 6300\AA doublet and MgI] 4570\AA emission, and the broad [FeII] blend around 5200\AA, requires the existence of a high-density O-rich core expanding at low velocities (\lsim 8,000 km s1^{-1}) and of Fe-rich material moving faster than the O-rich material. Synthetic spectra at late phases from aspherical (bipolar) explosion models are also computed with a two-dimensional spectrum synthesis code. The above features are naturally explained by the aspherical model if the explosion is viewed from a direction close to the axis of symmetry (30o\sim 30^{\rm o}), since the aspherical model yields a high-density O-rich region confined along the equatorial axis. By examining a large parameter space (in energy and mass), our best model gives following physical quantities: the kinetic energy E51EK/1051E_{51} \equiv E_{\rm K}/10^{51} ergs \gsim 8 - 12 and the main-sequence mass of the progenitor star M_{\rm ms} \gsim 30 - 35 \Msun. The temporal spectral evolution of SN 1998bw also indicates mixing among Fe-, O-, and C-rich regions, and highly clumpy structure.Comment: 38 pages, 22 figures. ApJ, 640 (01 April 2006 issue), in pres

    The effect of electromechanical coupling on the strain in AlGaN/GaN heterojunction field effect transistors

    Full text link
    The strain in AlGaN/GaN heterojunction field-effect transistors (HFETs) is examined theoretically in the context of the fully-coupled equation of state for piezoelectric materials. Using a simple analytical model, it is shown that, in the absence of a two-dimensional electron gas (2DEG), the out-of-plane strain obtained without electromechanical coupling is in error by about 30% for an Al fraction of 0.3. This result has consequences for the calculation of quantities that depend directly on the strain tensor. These quantities include the eigenstates and electrostatic potential in AlGaN/GaN heterostructures. It is shown that for an HFET, the electromechanical coupling is screened by the 2DEG. Results for the electromechanical model, including the 2DEG, indicate that the standard (decoupled) strain model is a reasonable approximation for HFET calculataions. The analytical results are supported by a self-consistent Schr\"odinger-Poisson calculation that includes the fully-coupled equation of state together with the charge-balance equation.Comment: 6 figures, revte

    On two pieces of folklore in the AdS/CFT duality

    Full text link
    In the AdS/CFT duality, it is often said that a local symmetry in a bulk theory corresponds to a global symmetry in the corresponding boundary theory, but the global symmetry can become local when one couples with an external source. As a result, the GKP-Witten relation gives a response function instead of a Green function. We explore this point in details using the example of holographic superconductors. We point out that these points play a crucial role to interpret the holographic London equation properly.Comment: 11 pages, ReVTeX4.1; v2: added discussio

    Symmetry Reduction by Lifting for Maps

    Full text link
    We study diffeomorphisms that have one-parameter families of continuous symmetries. For general maps, in contrast to the symplectic case, existence of a symmetry no longer implies existence of an invariant. Conversely, a map with an invariant need not have a symmetry. We show that when a symmetry flow has a global Poincar\'{e} section there are coordinates in which the map takes a reduced, skew-product form, and hence allows for reduction of dimensionality. We show that the reduction of a volume-preserving map again is volume preserving. Finally we sharpen the Noether theorem for symplectic maps. A number of illustrative examples are discussed and the method is compared with traditional reduction techniques.Comment: laTeX, 31 pages, 5 figure
    corecore