4 research outputs found

    Acute Hypoxemic Respiratory Failure in Children at the Start of COVID-19 Outbreak: A Nationwide Experience.

    No full text
    This is a prospective, multicenter, and observational study with the aim of describing physiological characteristics, respiratory management, and outcomes of children with acute hypoxemic respiratory failure (AHRF) from different etiologies receiving invasive mechanical ventilation (IMV) compared with those affected by SARS-CoV-2. Twenty-eight patients met the inclusion criteria: 9 patients with coronavirus disease 2019 (COVID-19) and 19 patients without COVID-19. Non-COVID-19 patients had more pre-existing comorbidities (78.9% vs. 44.4%) than COVID-19 patients. At AHRF onset, non-COVID-19 patients had worse oxygenation (PaO2/FiO2 = 95 mmHg (65.5-133) vs. 150 mmHg (105-220), p = 0.04), oxygenation index = 15.9 (11-28.4) vs. 9.3 (6.7-10.6), p = 0.01), and higher PaCO2 (48 mmHg (46.5-63) vs. 41 mmHg (40-45), p = 0.07, that remained higher at 48 h: 54 mmHg (43-58.7) vs. 41 (38.5-45.5), p = 0.03). In 12 patients (5 COVID-19 and 7 non-COVID-19), AHRF evolved to pediatric acute respiratory distress syndrome (PARDS). All non-COVID-19 patients had severe PARDS, while 3 out of 5 patients in the COVID-19 group had mild or moderate PARDS. Overall Pediatric Intensive Care Medicine (PICU) mortality was 14.3%. Children with AHRF due to SARS-CoV2 infection had fewer comorbidities and better oxygenation than patients with non-COVID-19 AHRF. In this study, progression to severe PARDS was rarely observed in children with COVID-19
    corecore