79 research outputs found

    Sodium versus potassium effects on the glutamic acid side-chains interaction on a heptapeptide

    Get PDF
    Equilibrium peptide conformations in solution, especially in the presence of salts, has been of interest for several decades. The fundamental interactions that determine the dominant peptide conformations in solution have been experimentally and computationally probed; however, a uni¯ed understanding has not yet emerged. In a previous study, we performed metadynamics simulations on the heptapeptide AEAAAEA in Sodium Chloride (NaCl) and Potassium Chloride (KCl) solutions at concentrations ranging from 0.5–2.0 M. Using a three-dimensional collective variable coordinate system, we computed the free energy landscapes in each saline environment as well as in pure water. We found that the presence of Naþ and Kþ ions induces some changes in the stability of the conformers that de¯ne the state space, but does not alter the overall energetics between conformers and does not favor helical conformations. We investigate here, how the presence of salts (NaCl and KCl) a®ects the glutamic–glutamic interaction and its consequences on the stability of each equilibrium conformation. We perform this study through ¯xed backbone simulations for the most populated conformations identi¯ed in our previous work: the -helix, 310-helix, -helix, the extended polyproline II (PPII) and 2.51-helix conformations. It was found that for each conformation, there exists stable substates determined by the glutamic acid side-chains distance and orientation, and that Naþ and Kþ cations (de) stabilize preferentially each conformation. It was also found that intramolecular single water mediated hydrogen bonds play a crucial role in the observed (de) stabilization of each equilibrium conformation.Fil: Asciutto, Eliana Karina. Duquesne University. Department of Chemistry and Biochemistry; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gaborek, Timothy. Duquesne University. Department of Chemistry and Biochemistry; Estados UnidosFil: Madura, Jeffry D.. Duquesne University. Department of Chemistry and Biochemistry; Estados Unido

    LeuT Conformational Sampling Utilizing Accelerated Molecular Dynamics and Principal Component Analysis

    Get PDF
    AbstractMonoamine transporters (MATs) function by coupling ion gradients to the transport of dopamine, norepinephrine, or serotonin. Despite their importance in regulating neurotransmission, the exact conformational mechanism by which MATs function remains elusive. To this end, we have performed seven 250 ns accelerated molecular dynamics simulations of the leucine transporter, a model for neurotransmitter MATs. By varying the presence of binding-pocket leucine substrate and sodium ions, we have sampled plausible conformational states representative of the substrate transport cycle. The resulting trajectories were analyzed using principal component analysis of transmembrane helices 1b and 6a. This analysis revealed seven unique structures: two of the obtained conformations are similar to the currently published crystallographic structures, one conformation is similar to a proposed open inward structure, and four conformations represent novel structures of potential importance to the transport cycle. Further analysis reveals that the presence of binding-pocket sodium ions is necessary to stabilize the locked-occluded and open-inward conformations

    Insights from molecular dynamics: The binding site of cocaine in the dopamine transporter and permeation pathways of substrates in the leucine and dopamine transporters

    No full text
    The dopamine transporter (DAT) facilitates the regulation of synaptic neurotransmitter levels. As a target for therapeutic and illicit psycho-stimulant drugs like antidepressants and cocaine, DAT has been studied intensively. Despite a wealth of mutational and physiological data regarding DAT, the structure remains unsolved and details of the transport mechanism, binding sites and conformational changes remain debated. A bacterial homolog of DAT, the leucine transporter (LeuTAa) has been used as a template and framework for modeling and understanding DAT. Free energy profiles obtained from Multi-Configuration Thermodynamic Integration simulations allowed us to correctly identify the primary and secondary binding pockets of LeuT Aa. A comparison of free energy profiles for dopamine and cocaine in DAT suggests that the binding site of cocaine is located in a secondary pocket, not the primary substrate site. Two recurring primary pathways for intracellular substrate release from the primary pocket are identified in both transporters using the Random Acceleration Molecular Dynamics method. One pathway appears to follow transmembranes (TMs) 1a and 6b while the other pathway follows along TMs 6b and 8. Interestingly, we observe that a single sodium ion is co-transported with leucine during both simulation types. © 2012 Elsevier Inc. All rights reserved

    Assessing Polyglutamine Conformation and Aggregation with Molecular Dynamics Techniques

    Get PDF
    corecore