97 research outputs found

    Asfotase alfa therapy for children with hypophosphatasia

    Get PDF
    Background. Hypophosphatasia (HPP) is caused by loss-of-function mutation(s) of the gene that encodes the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP). Consequently, cell-surface deficiency of TNSALP phosphohydrolase activity leads to extracellular accumulation of inorganic pyrophosphate, a natural substrate of TNSALP and inhibitor of mineralization. Children with HPP can manifest rickets, skeletal pain, deformity, fracture, muscle weakness, and premature deciduous tooth loss. Asfotase alfa is a recombinant, bone-targeted, human TNSALP injected s.c. to treat HPP. In 2012, we detailed the 1-year efficacy of asfotase alfa therapy for the life-threatening perinatal and infantile forms of HPP. Methods. Here, we evaluated the efficacy and safety of asfotase alfa treatment administered to children 6–12 years of age at baseline who were substantially impaired by HPP. Two radiographic scales quantitated HPP skeletal disease, including comparisons to serial radiographs from similarly affected historical control patients. Results. Twelve children receiving treatment were studied for 5 years. The 6-month primary endpoint was met, showing significant radiographic improvement. Additional significant improvements included patient growth, strength, motor function, agility, and quality of life, which for most patients meant achieving normal values for age- and sex-matched peers that were sustained at 5 years of treatment. For most, pain and disability resolved. Mild to moderate injection-site reactions were common and were sometimes associated with lipohypertrophy. Low anti–asfotase alfa antibody titers were noted in all patients. No evidence emerged for clinically important ectopic calcification or treatment resistance. Conclusions. Asfotase alfa enzyme replacement therapy has substantial and sustained efficacy with a good safety profile for children suffering from HPP. Trial Registration. ClinicalTrials.gov NCT00952484 (https://clinicaltrials.gov/ct2/show/NCT00952484) and NCT01203826 (https://clinicaltrials.gov/ct2/show/NCT01203826). Funding. Alexion Pharmaceuticals Inc. and Shriners Hospitals for Children

    Increased frequency of porcine epidemic diarrhea virus shedding and lesions in suckling pigs compared to nursery pigs and protective immunity in nursery pigs after homologous re-challenge

    Get PDF
    Porcine epidemic diarrhea virus (PEDV) causes enteric disease in pigs and spreads rapidly after entering naïve pig populations. The objectives were to (1) compare the disease course following inoculation with PEDV isolate US/Colorado/2013 in naïve 10 day and 8 week-old pigs, and (2) contrast the naïve response to homologous challenge in 8 week-old pigs. Pigs were randomly assigned into group 1 (n = 40, no PEDV exposure), group 2 (n = 43, PEDV inoculation at 10 days of age) and group 3 (n = 48, PEDV inoculation at 8 weeks of age). Thirty-three group 2 pigs received a homologous challenge at 8 weeks of age. Following primary or secondary inoculation, 3–10 pigs were euthanized at days post-inoculation (dpi) 1, 2, 3, 7 or 14. Clinical signs were more pronounced in 10 day-old pigs compared to 8 week-old pigs at dpi 2 and 3, a higher number of 10 day-old pigs shed PEDV RNA in feces compared to 8 week-old pigs. Typical severe atrophic enteritis of PEDV infection was observed at dpi 3 in both age groups, and at dpi 4 and 14 fecal shedding patterns were also similar. While both age groups had seroconverted to PEDV by dpi 14, IgG levels were higher in 8 week-old pigs. PEDV IgA antibodies were detected in feces of approximately 50% of the pigs at dpi 44. In homologous challenged pigs, no clinical signs or lesions were found, and PEDV fecal shedding was restricted to less than 10% of the pigs indicating the existence of homologous protection 44 days after initial PEDV exposure

    Phyllanthus spp. Induces Selective Growth Inhibition of PC-3 and MeWo Human Cancer Cells through Modulation of Cell Cycle and Induction of Apoptosis

    Get PDF
    BACKGROUND: Phyllanthus is a traditional medicinal plant that has been used in the treatment of many diseases including hepatitis and diabetes. The main aim of the present work was to investigate the potential cytotoxic effects of aqueous and methanolic extracts of four Phyllanthus species (P.amarus, P.niruri, P.urinaria and P.watsonii) against skin melanoma and prostate cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: Phyllanthus plant appears to possess cytotoxic properties with half-maximal inhibitory concentration (IC(50)) values of 150-300 µg/ml for aqueous extract and 50-150 µg/ml for methanolic extract that were determined using the MTS reduction assay. In comparison, the plant extracts did not show any significant cytotoxicity on normal human skin (CCD-1127Sk) and prostate (RWPE-1) cells. The extracts appeared to act by causing the formation of a clear "ladder" fragmentation of apoptotic DNA on agarose gel, displayed TUNEL-positive cells with an elevation of caspase-3 and -7 activities. The Lactate Dehydrogenase (LDH) level was lower than 15% in Phyllanthus treated-cancer cells. These indicate that Phyllanthus extracts have the ability to induce apoptosis with minimal necrotic effects. Furthermore, cell cycle analysis revealed that Phyllanthus induced a Go/G1-phase arrest on PC-3 cells and a S-phase arrest on MeWo cells and these were accompanied by accumulation of cells in the Sub-G1 (apoptosis) phase. The cytotoxic properties may be due to the presence of polyphenol compounds such as ellagitannins, gallotannins, flavonoids and phenolic acids found both in the water and methanol extract of the plants. CONCLUSIONS/SIGNIFICANCE: Phyllanthus plant exerts its growth inhibition effect in a selective manner towards cancer cells through the modulation of cell cycle and induction of apoptosis via caspases activation in melanoma and prostate cancer cells. Hence, Phyllanthus may be sourced for the development of a potent apoptosis-inducing anticancer agent

    GO-PROMTO Illuminates Protein Membrane Topologies of Glycan Biosynthetic Enzymes in the Golgi Apparatus of Living Tissues

    Get PDF
    The Golgi apparatus is the main site of glycan biosynthesis in eukaryotes. Better understanding of the membrane topology of the proteins and enzymes involved can impart new mechanistic insights into these processes. Publically available bioinformatic tools provide highly variable predictions of membrane topologies for given proteins. Therefore we devised a non-invasive experimental method by which the membrane topologies of Golgi-resident proteins can be determined in the Golgi apparatus in living tissues. A Golgi marker was used to construct a series of reporters based on the principle of bimolecular fluorescence complementation. The reporters and proteins of interest were recombinantly fused to split halves of yellow fluorescent protein (YFP) and transiently co-expressed with the reporters in the Nicotiana benthamiana leaf tissue. Output signals were binary, showing either the presence or absence of fluorescence with signal morphologies characteristic of the Golgi apparatus and endoplasmic reticulum (ER). The method allows prompt and robust determinations of membrane topologies of Golgi-resident proteins and is termed GO-PROMTO (for GOlgi PROtein Membrane TOpology). We applied GO-PROMTO to examine the topologies of proteins involved in the biosynthesis of plant cell wall polysaccharides including xyloglucan and arabinan. The results suggest the existence of novel biosynthetic mechanisms involving transports of intermediates across Golgi membranes

    Role of obesity in a randomized placebo-controlled trial of difluoromethylornithine (DFMO) + sulindac for the prevention of sporadic colorectal adenomas

    Get PDF
    BACKGROUND: Chemoprevention with the polyamine-inhibitory regimen difluoromethylornithine (DFMO) + sulindac markedly reduces risk of recurrent adenoma in colorectal adenoma patients. Obesity is associated with risk of colorectal adenoma and colorectal cancer. This study investigates how obesity influences risk of recurrent adenoma after prolonged treatment with DFMO + sulindac versus placebo. METHODS: Our analysis included subjects enrolled in the phase III colorectal adenoma prevention clinical trial investigating DFMO + sulindac versus placebo. Patients were classified by obesity (body mass index, BMI ≥ 30 kg/m(2)) status at baseline. Pearson χ(2) statistic and Mann–Whitney U test were used to compare baseline characteristics, including rectal tissue polyamine levels. Log-binomial regression analysis was used to determine the risk ratio (RR) of recurrent adenomas, adjusted for covariates and an interaction term for obesity and treatment. RESULTS: The final analytic cohort was comprised of 267 patients. In separate regression models, the risk of adenoma recurrence after treatment compared to placebo was similar for obese (RR = 0.32, 95 % CI 15–71) and non-obese patients (RR = 0.27, 95 % CI 15–49). No significant interaction was detected between obesity, treatment, and risk of colorectal adenoma in the full regression model (p(interaction) = 0.91). CONCLUSIONS: Obesity does not substantially modify the colorectal adenoma risk reduction ascribed to DFMO + sulindac versus placebo
    corecore